
FAST METHODS FOR IDEAL BALLOONING STABILITY 
DETERMINATION IN 3-D CONFIGURATIONS

R. SANCHEZ, S.P. HIRSHMAN, J.C. WHITSON, 
V.E. LYNCH and B.A. CARRERAS, 

Oak Ridge National Laboratory

A.S. WARE,
University of Montana



 

MOTIVATION

– Available ballooning codes are TOO SLOW to allow direct 
integration into VMEC optimization procedure.

– Stability analysis is done AFTER optimization process.

AIM

– Improve and speed-up existing algorithms.
– Develop faster new approaches.
– Speed-up converter form VMEC to Boozer coordinates.



BALLOONING ALGORITHM CLASSIFICATION

INTEGRATORS

• Integrate the ballooning 
equation

• Get “exact” eigenvalue 

VARIATIONAL METHODS

• Minimize related minimum 
principle over a given set of 
test functions

• Approximate eigenvalue 
from below

SPEED-UP KEYS
•MINIMIZE number of evaluations of ballooning coefficients

•Solve only for MOST USTABLE modes

•Use SYMMETRY whenever possible



IDEAL BALLOONING EQUATION
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• Since P(y),R(Y)>0, eigenvalues are discrete, real and 
ordered. 

• A mode is unstable if an integrable F can be found for any 
negative value of λ



SHOOTING METHODS

• Advance F from the ends to the origin (or to one end to the 
origin, if symmetry) for given value of λ

• Discretization: semi-implicit or implicit
• Grid step size: fixed or adaptative
• Vary λ until continuity (or zero, if symmetry) of first 

derivative at the origin
• Need to be coupled to root-finder

SPPED-UP KEYS
•Chose most efficient root-finder algorithm

•Usually fixed grid is fastest choice

•Use solution properties to determine necessity of evaluation



TERPSICHORE

• Shooting method coupled to a root-finder using bisection
• Discretization: semi-implicit
• Grid: fixed
• Smallest λ always evaluated

• No symmetry.



MATRIX METHODS

• Discretize ballooning equation using 2nd-order scheme of 
fixed grid of N points and step size h

• Rewrite discretized equations in matrix form:

AF=λBF
    where F is a N-length vector containing the values of F 

over the grid; A and B are respectively NxN tridiagonal and 
diagonal symmetric real matrices

• Solve tridiagonal eigenvalue problem:

|B-1A-λI|=0

SPEED-UP KEYS
•Choose most efficient matrix eigenvalue algorithm

•Use positiveness of cross-diagonal products



CONVERGENCE OF EIGENVALUE

• Respect to grid step size (h)      
USE Richardson’s approach to the limit

– Solve for decreasing {hk} to get {λk}
– Interpolate {λk} to h2-polynomial

– Extrapolate λ to h=0 and estimate error
– Further decrease step size if error is not small enough

• Respect to integration box size (xmax)
 COUPLE to Mercier’s criterion

SPEED-UP KEYS
•Reduce step size using hk+1=hk/2 so that only mid-points need to 
be evaluated at next step



BALLOONING MINIMUM PRINCIPLE

λ F, F*( ) ≡
P(y)

dF

dy

2

− Q(y) F 2
 

 
 
 

 

 
 
 
dy

−∞

+∞

∫

R( y) F 2 dy
−∞

+∞

∫

F ∈L2 −∞,+∞( )

• The lowest eigenvalue λ1 corresponds to the global 
minimum of the functional λ(F,F*) over all integrable 
functions



HERMITE VARIATIONAL METHOD

• Minimize λ(F,F*) using test functions which are a sum of M 
Hermite polynomials weigthed by a gaussian of width α.

• Minimization with respect to the coefficients ai of the Hermite 
polynomials is done analytically resulting in a generalized 
eigenvalue matrix problem

C(α)A=λ(α)D(α)A
    where A is a M-length vector containing the coefficients ai and 

C(α) and D(α) are MxM symmetric matrices.

• Elements of C and D are integrals over the whole domain of 
products of the test function with ballooning coefficients

• Minimization with respect to α is done using a 1-D algorithm

SPEED-UP KEYS
•Use Richardson’s scheme to evaluate integrals

•Choose efficient eigenvalue and minimization algorithms



VGAUSS: VARIATIONAL ROUTINE

• Uses as test function a sum of three arbitrary centered 
gaussians

• Integration is done with a fixed step rule
• Minimization is then carried out over SEVEN parameters 

using simplex method.



ALGORITHM PERFORMANCE I

VGAUSS: 3 gaussians+simplex method

TERPSICHORE: Fixed grid+bisection

VHERM3: 3 lowest order Hermite polynomials+Brent 1-D 
minimizer+Richardson’s scheme

MATRIX: using Richardson’s scheme

FSHOOT: Fixed grid+VWDB root-finder+ Richardson’s scheme

ASHOOT: Adaptative grid + VWDB root-finder



ALGORITM CPU-TIME(s/s) EVALUATIONS RATIO TO TERP
VGAUSS ~60 270,000 3.0
TERPS ~2 90,000 1.0
VHERM3 ~0.5 18,435 0.2
MATRIX ~0.5 23,895 0.26
FSHOOT ~0.5 22,425 0.25
ASHOOT ~3.5 173,760 1.9

ALGORITHM PERFORMANCE II

• Speed depends very strongly on number of evaluations.

• TERPSICHORE can be speeded up reducing number of points but 
this is not done automatically. And different surfaces require 
different number of points.

• An extra 5x factor can be gained from optimizing Boozer 
conversion algorithm.



CONCLUSIONS

• Ballooning stability determination can be speeded up 
minimizing the number of evaluations  of the ballooning 
coefficients along the field line using Richardson’s 
scheme

• At the same time, control of the convergence of the 
eigenvalue is ensured 

• Further speed can be gained using: a) more efficient 
algorithms, b) symmetry and c) fast stability criteria to 
decide which eigenvalues to evaluate

• Preliminary results show an improvement in speed of 
about 4(8) times with respect to TERPSICHORE and 
more than 100 times with respect to previous variational 
routines.


