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MOTIVATION

— Available ballooning codes are TOO SLOW to allow direct
Integration into VMEC optimization procedure.

— Stability analysis is done AFTER optimization process.

AIM

— Improve and speed-up existing algorithms.
— Develop faster new approaches.
— Speed-up converter form VMEC to Boozer coordinates.



BALLOONING ALGORITHM CLASSIFICATION Oﬂ\l

INTEGRATORS VARIATIONAL METHODS

 Integrate the ballooning e Minimize related minimum
equation principle over a given set of

« Get “exact” eigenvalue test functions
« Approximate eigenvalue

from below

SPEED-UP KEYS

*MINIMIZE number of evaluations of ballooning coefficients
*Solve only for MOST USTABLE modes
Use SYMMETRY whenever possible




IDEAL BALLOONING EQUATION Oﬂ\l
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* Since P(y),R(Y)>0, eigenvalues are discrete, real and
ordered.

« A mode is unstable if an integrable F can be found for any
negative value of |




SHOOTING METHODS Oﬂ\l

« Advance F from the ends to the origin (or to one end to the
origin, if symmetry) for given value of |

» Discretization: semi-implicit or implicit
« Grid step size: fixed or adaptative

« Vary | until continuity (or zero, if symmetry) of first
derivative at the origin

* Need to be coupled to root-finder

SPPED-UP KEYS

Chose most efficient root-finder algorithm

Usually fixed grid is fastest choice

eUse solution properties to determine necessity of evaluation




TERPSICHORE Oﬂ\l

Shooting method coupled to a root-finder using bisection
Discretization: semi-implicit

Grid: fixed

Smallest | always evaluated

No symmetry.




MATRIX METHODS Oﬂ\.l

 Discretize ballooning equation using 2"%-order scheme of
fixed grid of N points and step size h

* Rewrite discretized equations in matrix form:
AF=| BF

where F is a N-length vector containing the values of F
over the grid; A and B are respectively NxN tridiagonal and
diagonal symmetric real matrices

» Solve tridiagonal eigenvalue problem:
IB-1A-I 1|=0

SPEED-UP KEYS

Choose most efficient matrix eigenvalue algorithm

*Use positiveness of cross-diagonal products




CONVERGENCE OF EIGENVALUE Oﬂ\.l

* Respect to grid step size (h)

i> USE Richardson’s approach to the limit

— Solve for decreasing {h,} to get {l ,}

— Interpolate {l ,} to h2-polynomial

— Extrapolate | to h=0 and estimate error

— Further decrease step size if error is not small enough

 Respect to integration box size (xmax)
i> COUPLE to Mercier’s criterion

SPEED-UP KEYS

*Reduce step size using h,,,=h,/2 so that only mid-points need to
be evaluated at next step




BALLOONING MINIMUM PRINCIPLE Oﬂ\l
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 The lowest eigenvalue | ; corresponds to the global
minimum of the functional | (F,F’) over all integrable
functions




HERMITE VARIATIONAL METHOD Oﬂ\l

* Minimize | (F,F) using test functions which are a sum of M
Hermite polynomials weigthed by a gaussian of width a.

« Minimization with respect to the coefficients a;, of the Hermite
polynomials is done analytically resulting in a generalized
eigenvalue matrix problem

C(a)A=Il (a)D(a)A

where A is a M-length vector containing the coefficients a, and
C(a) and D(a) are MxM symmetric matrices.

 Elements of C and D are integrals over the whole domain of
products of the test function with ballooning coefficients

« Minimization with respect to a is done using a 1-D algorithm

SPEED-UP KEYS

*Use Richardson’s scheme to evaluate integrals

*Choose efficient eigenvalue and minimization algorithms




VGAUSS: VARIATIONAL ROUTINE Oﬂ\l

Uses as test function a sum of three arbitrary centered
gaussians

Integration is done with a_fixed step rule

Minimization is then carried out over SEVEN parameters
using simplex method.




ALGORITHM PERFORMANCE | Oﬂ\l

VGAUSS: 3 gaussians+simplex method
TERPSICHORE: Fixed grid+bisection

VHERMS3: 3 lowest order Hermite polynomials+Brent 1-D
minimizer+Richardson’s scheme

MATRIX: using Richardson’s scheme
FSHOOT: Fixed grid+VWDB root-finder+ Richardson’s scheme
ASHOOT: Adaptative grid + VWDB root-finder




ALGORITHM PERFORMANCE I1
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ALGORITM CPU-TIME(s/s) |EVALUATIONS |RATIO TO TERP
VGAUSS ~60 270,000 3.0
TERPS ~2 90,000 1.0
VHERM3 ~0.5 18,435 0.2
MATRIX ~0.5 23,895 0.26
FSHOOT ~0.5 22,425 0.25
ASHOOT ~35 173,760 1.9

* Speed depends very strongly on number of evaluations.
« TERPSICHORE can be speeded up reducing number of points but

this is not done automatically. And different surfaces require
different number of points.

conversion algorithm.

 An extra 5x factor can be gained from optimizing Boozer



CONCLUSIONS Oﬂ\l

Ballooning stability determination can be speeded up
minimizing the number of evaluations of the ballooning
coefficients along the field line using Richardson'’s
scheme

At the same time, control of the convergence of the
eigenvalue is ensured

Further speed can be gained using: a) more efficient
algorithms, b) symmetry and c) fast stability criteria to
decide which eigenvalues to evaluate

Preliminary results show an improvement in speed of
about 4(8) times with respect to TERPSICHORE and
more than 100 times with respect to previous variational
routines.




