
•  <R0> = 0.90 m

•  <ap> = 0.33 m

•  <B0> = 1 T ± 0.2 T 

  for 1 s

•  Iplasma  ≤≤≤≤ 150 kA

•  PECH = 0.6–1.2 MW

•  PICRF = 1–3 MW

Multi-Laboratory Design Team;  Project Coordinator – J.F. Lyon, ORNL

ORNL – L.A. Berry, S.P. Hirshman, B.E. Nelson, D.A. Spong, D.J. Strickler, D.E. Williamson,

   D.B. Batchelor,  M.J. Cole, R.H. Fowler, P. Goranson, E.F. Jaeger, P.K. Mioduszewski, D.A. Rasmussen

U. Montana – A. Deisher, D. Heskett , A.S. Ware

PPPL – G.Y. Fu, D. Mikkelsen, D.A. Monticello U. Texas at Austin – W.H. Miner, jr., P.M. Valanju

University of Tennessee, Knoxville – T. Shannon Universidad Carlos III de Madrid,  Spain – R. Sanchez

Overview of the QPS Project



QPS Objectives and Plans
QPS Program Objectives

•  Confinement understanding
   – Anomalous transport, internal transport barriers, and
       flow shear in low- R/a configurations with quasi-
       poloidal symmetry

   – Reduction of neoclassical transport due to near
       alignment of B and ∇∇∇∇ B

   – Impact of poloidal flows on enhanced confinement

   – Equilibrium quality (islands, ergodic regions) and its
      repair at R/a ~ 2.7; robustness with ββββ    and dependence

      of bootstrap current on configuration properties

   – Understand ββββ limits and limiting mechanisms for quasi-

      poloidally symmetric configurations at very low R/a

•  Explore physics not obtainable from other
   stellarator experiments and theory
   – effect of strong toroidal coupling

   – significant bootstrap current in quasi-poloidal geometry

   – different neoclassical transport reduction mechanism

•  Study fundamental issues common to low- ββββ and
   high- ββββ quasi-poloidal configurations

   – scaling of the bootstrap current with ββββ

   – reduction of H-mode power threshold

   – flux surface robustness as beta increases due to reduced
      parallel bootstrap current

   – ballooning instability character and limits

Status and Plans

• Successful Physics and Project Validation reviews

• Complete assessment of QPS physics properties

• Improve engineering design and cost estimate

• April  2003:  Design, Cost & Schedule Review

• 2003-2007:   R&D, design and construction

• Sept. 2007:   First plasma

QPS Improvements Over Last Year
•  Neoclassical losses reduced by factor 19,
   at same level as in W 7-X with 4 x R/a

•  Departure from quasi-poloidal symmetry
    reduced by factor 2.7

•  Space in middle increased to accommodate TF
    coil legs and OH solenoid

•  Increased plasma-coil and coil-coil spacings

•  Modular coils modified to reduce errors
    in reconstructing B field by factor 2.2

•  Smaller vacuum vessel;  modified to eliminate
    eddy currents induced by PF system

FY 2002 FY 2003 FY 2004 FY 2005 FY 2006 FY 2007

Validation Review
Conceptual Design      ∆∆∆∆           ∆∆∆∆ ∆∆∆∆ CDR

Ext. Design Assessment
Advanced Conceptual Design

Preliminary Design

Prototype R&D

Engineering Design

Fabrication
1st plasma

Assembly & Testing ∆∆∆∆

Research Preparations

Infrastructure
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QPS Configuration Properties
QPS Coils Allow Variation of Rotational

Transform and Shear
A Stable Path Exists from Vacuum to ββββ = 2.1%

Infinite-n Ballooning Limits Likely to be Exceeded  
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•  NCSX stability calculations
    indicate that finite-n
    ballooning limits are
    typically ~50% higher than
    infinite-n limits
    –  have not yet explored
        reduction of second
        stability “gap” with
        finite n or path around it
•  Bootstrap current is
    overestimated

    –  lower plasma current
        leads to higher ββββ limits

•  Infinite-n ballooning
    growth rates vs. S = ( r/a)2

•  Fixed ( unoptimized)
    plasma pressure profiles

Finite- ββββ Flux Surfaces Do Not Require Healing

vacuum

2.1 % 〈β〉

 surfaces
cut off by
computation
boundary



QPS Coil Set Allows Testing Neoclassical Transport
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1-D Transport Calculations
Variation with ISS-95 Confinement Multiplier

Variation with Effective Ripple
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