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Substantial progress has been made over recent months in the
development of compact quasi-omnigenous (QO) stellarators:

• Optimized configurations extended to 2 - 4 field periods
– good physics characteristics with lower ripple

– stellarator-like iota profile (di/dr > 0)

• Attractive modular coilsets developed
– Adequate coil/plasma spacing for extrapolation to a compact

reactor

– Good flux surface reconstruction

– Physics optimization properties preserved

• Transport physics
– Favorable results for reactor extrapolation

• Improved ballooning stability through profile control



A new set of stellarator optimization tools has identified
attractive low aspect ratio hybrid configurations.

• Greater configurational flexibility
– Uses second adiabatic invariant rather than symmetries in |B|

– Targets desirable properties directly (well, iota profile, ...)

– Varies both plasma current and shape of outer surface

– Modular coils are generated from which flux surfaces can be
reconstructed

• Attractive low aspect ratio (R0/a ≈ 3) devices
– good confinement

– confines energetic particles

• can be scaled to confine 3.5 MeV alphas

– good ballooning stability <β> = 6%

– low plasma current



Quasi-Omnigenous (QO) configurations have evolved to
occupy a unique niche among advanced stellarators:

• Lower aspect ratio than possible with quasi-helical
symmetry (HSX)

• Lower levels of bootstrap current (more transform
provided by coils) than quasi-toroidal symmetry (QAS)

• More compact than W7-X style optimization



Attractive physics properties of QO configurations:

• Transport

– Avoids 1/ν regimes

– Confines 3.5 Mev alpha particles

• Low bootstrap current/large fraction of built-in transform

– small risk of disruptions

– weakly coupled feedback
confinement      pressure profile        bootstrap current

• Good alignment between required and actual bootstrap profile

• High ballooning stable β  (6 - 9%)

• Realizable coils - can be extrapolated to a compact reactor



Magnetic symmetry is sufficient, but not
necessary for good confinement.

• Symmetries in |B| constant of the motion

• Quasi-symmetry          single dominant helicity

• J* (omnigeneity)          longitudinal adiabatic invariant

Omnigeneity:

quasi-omnigeneity         approximate J*(ψ)

                       no single dominant helicity

Allowing multiple helicities provides flexibility for:
      - reduction of finite β bootstrap current
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Our optimization procedure accounts for physics issues
specific to low aspect ratio stellarator hybrids:

• Flexible framework - can easily add new targets

• Geometry of outer flux surface/current profile determines
physics properties

– more general description of boundary than other codes

• We vary the shape of the outer surface rather than coils directly

– Coils “reverse-engineered” - separate optimization loop

– Prevents loss of flux surfaces during the optimization

– Coil reconstruction is non-unique

• allows satisfaction of engineering constraints
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The optimization loop is driven by the components of χ2

(flexible, easily extended):  
    Targets   

(Physics/Engineering)
    Example   

Bounce-average omnigeneity
(drift surfaces and flux surfaces

aligned)

Bmin = Bmin (ψ)
Bmax = Bmax (ψ)

J* = J*(ψ)
Current profile monotone increasing I(ψ)

Iota profile i(ψ) = 0.3 (ρ=0) to 0.45 (ρ=a)

Magnetic Well V” < 0 over cross section
Aspect ratio R0/a ≈ 3 to 4

Minimize magnetic ripple Min (Bmax - Bmin)

Limit maximum plasma current Imax < 100 kAmps

Limit outer surface curvature avoid strong elongation/cusps

Control variables:  ≈ 20 Fourier harmonics Rmn, Zmnfor outer
     surface + I0(ψ) - plasma current profile



Stellarator optimization loop determines the outer  flux surface
shape.  Coils which produce this shape are then derived:
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Top view of 3 and 4 field period physics optimized
QO configurations



Bmn spectra for 3 and 4 field period quasi-omnigenous
devices

3 field periods 4 field periods



Monte Carlo calculations of ion energy confinement
for a scan of modest sized 2-4 period devices

(for eφ/kT = 0, Tion = 1keV, n = 5x1013cm-3, a = 0.34m, R0 = 1.25m, <B> = 2T):
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Neoclassical transport has been checked in a
reactor-sized device (R0 = 8m) with the size
chosen to provide 2m of blanket thickness

• Scaled 3 period device: <a> = 2.2m, R0 = 8m, <B> = 5T
allows coil/plasma spacing of 2m

• Point model lifetimes (i.e., τ = a2/D) are in the range of

600 to 2500 τii  (Lawson criterion: needs 100τii)

• All 3.5 MeV alpha orbits examined so far (starting at
both r/a = 0 and 0.5) have been confined over the full
range of pitch angles (-1 < v||/v < 1)



Scaling of 3 field period reactor Monte Carlo
diffusion coefficient with electric field:
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Scaling of 3 field period reactor Monte Carlo
diffusion coefficient with density:
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Orbits of 3.5 MeV alpha particles started at r/a = 0.5 are
shown (in Boozer coord’s.) for a 3 field period QO device
which has been scaled to <a> = 2.2m, R0 = 8m, <B> = 5T:
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Bootstrap current models which can be coupled with the
equilibrium are being adapted for QO configurations
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Two different bootstrap
current calculations have been

benchmarked for QO configurations:

Bootstrap current levels are considerably
reduced from those in the equivalent

axisymmetric device:



Recent progress has been made in stabilizing ballooning
instabilities in low field period QO configurations:

• Profile control is essential
– toroidal current and iota profiles

• Toroidal current profile effects:
– Configurations with substantial reversed current regions tend to

be ballooning unstable

• Edge shear in iota
– Effective at stabilizing edge ballooning unstable regions

• N = 3 configurations up to <β> = 9% now exist

– only weakly ballooning ustable

– complete stabilization likely from further profile optimization

• Longer term approach: include ballooning criteria in χ2

– vary shaping for stabilization



Ballooning stability is sensitive to the toroidal
current profile:
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Localized edge shear in iota can remove the
edge ballooning unstable region:
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Recent Coil Design Results

• Two approaches:

NESCOIL -  synthesizes coils from external currents on a winding
surface

COILOPT - places coils on a surface, varies surface shape and coil
shape within the surface, minimizes coil length, nulls out Bnormal

• Accomplishments:
– NESCOIL/COILOPT have given preliminary designs for compact

(A ~ 3.5), 3 and 4 field period devices

• COILOPT:  5, 7 coils per period (odd numbers work best)

• At A = 3.6, Nfp = 3, R = 1.5m find acoil = 0.28m

          Reactor major radius ~ 9 m

• 4 period configuration has been scaled to fit within PBX-M
vessel



3 field period QO configuration with 8 coils/period
(4 different coil types) - coils derived from NESCOIL



For a R0 = 1.3m 4 field period device, the error
from discrete coils has a minimum at a coil/plasma

separation of 25 - 30 cm:
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Top view of modular coils, field line trace and
magnetic axis:



Flux surfaces reconstruction from coils at ζ = 0°

28 cm

i = 3/8

i = 9/20



Our 3 field period optimized configuration departs
from quasi-symmetry:

bumpy field

tokamak 1/R

helical axis

• different ratios of m/n present
• n > 0 components present



Transform and well for m = 3 QO configuration
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Comparing the original optimized 3 field period device with
equilibria reconstructed from the NESCOIL coil set shows

confinement optimization has been preserved.
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Comparison of transport rates between a scaled QAS4 (A =
2.2, <a> = .36m, R0 = 0.8m, <B> = 1.9T) and  3 field period
QO device (A = 3.5, <a> = .36m, R0 = 1.26 m, <B> = 1.9T)
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- Conclusions -

• A new set of stellarator optimization tools has been
developed
– We target transport reduction (omnigeneity) rather than

symmetries in |B|

– Our optimization procedure is flexible and easily extended

• Leads to attractive low aspect ratio (R0/a ≈ 3-4) hybrid
devices over a range of field periods (Nfp = 2 to 8)
– Good thermal confinement (can approach that of tokamaks)

– Alphas can be confined in reactor scaled device

e.g., R0 = 8m, <a> = 2.2m, <B> = 5T

– Ballooning <β> limit at least 6%

– Modular coils accurately reconstruct flux surfaces and allow
sufficient coil/plasma spacing for 2m blanket in a compact
reactor



Coils for an optimized 4 field period configuration in the
environment of the PBX vacuum vessel:


