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• U. Texas at Austin  – W.H. Miner, jr., P.M. Valanju

• U. Montana  – A.J. Deisher, D. Heskett , A.S. Ware

• PPPL – A. Brooks, G.Y. Fu, S. Hudson, D. Mikkelsen, 

D.A. Monticello, N. Pomphrey

• Universidad Carlos III de Madrid,  Spain  – R. Sanchez

• U. Tennessee  – T. Shannon



Over the past 6 years we have worked
on development of a low-aspect-ratio
stellarator that incorporates the
bootstrap current in its optimization.

This has resulted in QPS -- a quasi-
poloidal stellarator that has very low
aspect ratio, excellent neoclassical
confinement, good MHD properties,
and a high- ββββ reactor approach.



Topics

• Flux surface and coil geometry

• Quasi-poloidal symmetry

• Confinement properties

• MHD stability

• Engineering design

• Experimental objectives

• Status/Plans



QPS Magnetic Configuration

<<<<ββββ>>>> = 2%, Ibs = 60 kA|B| (T)
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• For exact poloidal ( θθθθ) symmetry, p θθθθ is conserved

– orbit excursions are limited to ρρρρTor << ρρρρpol  (banana width)

– no flow damping in the poloidal direction

– the bootstrap current is reduced by ~ ιιιι /N

• However, it is not possible to have perfect symmetry on all flux
surfaces in a stellarator ⇒⇒⇒⇒  “quasi-poloidal symmetry”

Quasi-Poloidal Symmetry
Reduces Neoclassical Transport



• Closer alignment of B and ∇∇∇∇ B than is possible with other forms
of symmetry - reduces radial drift and banana width

• Minimum flow damping in the direction of E r x B
– flow shear could be self-sustained through E r driven by

ambipolar diffusion or externally produced

• Trapped particles are localized in low curvature regions
– could improve dissipative trapped electron mode stability

• Properties improve with increasing ββββ
– access to a second stability region
– omnigeneity, thermal and fast ion confinement
– configuration becomes relatively insensitive to increasing ββββ
– bootstrap current is nearly independent of ββββ    at higher     ββββ

Unique Features of Quasi-Poloidally (QP)
Symmetric Stellarators



Quasi-Poloidal |B| Structure Varies with Radius
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Finite- ββββ Modifications of |B| Improve the
Quasi-Poloidal Symmetry
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QPS Configurations Have Small
Neoclassical Transport

ripple losses
important at
low collisionality

anomalous losses
dominate over
ripple losses at
low collisionality,
further improvement
is not needed0.001
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 ISS-95 Confinement Dominates over
Neoclassical Confinement
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Confinement Improves with 〈〈〈〈ββββ〉〉〉〉

• Same trend seen
up to 〈〈〈〈ββββ〉〉〉〉  = 23% in
quasi-poloidal
reactor
configuration

• Can be simulated
by Ohmic current
in QPS 0.5
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Part of the Rotational Transform
Is Due to the Bootstrap Current
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P = 1-3 MW Gives the Parameters Needed for the
QPS Objectives

QPS parameter s pace for B = 1 T
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Anomalous and Neoclassical Loss Channels
Can Be Separated through Choice of Density and

Spoiling the Quasi-Poloidal Symmetry

QPS configuration
with less
quasi-poloidal
symmetry
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Spoiling the Quasi-Poloidal Symmetry Can Be
Used to Enhance the Neoclassical Loss Channel
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Mercier Stability:  a Magnetic Well Provides
Stability Except at Isolated Resonances

• Mercier stability criteria for fixed boundary at < ββββ> = 2.5%

• However, these limits are exceeded in stellarator
experiments

-8

-6

-4

-2

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

DWell
DShear
Dgeod

S

Well
Shear
Curvature

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

D
M
er
c

S

Mercier unstable 
near ιιιι=0.4 surface



Ballooning Stability:  Free Boundary Scan,
Stable & Bootstrap Consistent to ββββ    = 2.3 %

• Ballooning growth rate & parallel current, free boundary ββββ scan
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Kink & Vertical Stability:  QPS configuration is
kink/vertical stable for < ββββ> up to 5%

• n = 0 and n = 1
eigenvalues
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The QPS Modular Coil Set Has Been Optimized
to Create the Desired Magnetic Configuration

• 16 coils of 4 different types

• Adequate coil-coil spacing, plasma-coil
spacing, minimum bend radius

• Good access between coils for heating
and diagnostics

• Room in center for TF coil legs and OH
solenoid



QPS Has Additional Coils to Change Transform, Shear, and
Magnetic Configuration for Physics Studies

•  ∆∆∆∆BT = ±0.2 T, PF coils for shifting and shaping the plasma

•  ±150 kA Ohmic current allows changing transform and shear

TF outer legs     

VF coils

Modular
coils



Quasi- Poloidal Stellarator
• <R> = 0.9 m

• <a> = 0.33 m

• <R>/<a> = 2.7

• Vplasma  = 2 m3

• 61-cm dia. ports

• No interior
vacuum vessel

•  ιιιι 0 = 0.21, ιιιι a = 0.32

• Bmod  = 1 T (1 s)

• BT = ± 0.2 T

• Ip ≤≤≤≤ 150 kA

• PECH = 0.6-1.2 MW

• PICRF = 1-3 MW



QPS  will  Study  Stellarator  Issues  for
Quasi-Poloidal  Symmetry  and  Very  Low  R/a

• Reduction of neoclassical transport due to near
alignment of B and ∇∇∇∇ B

• Anomalous transport scaling, internal transport
barriers, poloidal flow shear

• Impact of poloidal flows on enhanced confinement

• Equilibrium quality (islands, ergodic regions) for ββββ up
to ~2%

• Dependence of the bootstrap current on configuration
properties

• Ballooning instability character and ββββ limits



Status and Plans

• Passed physics and project reviews in 2001

• Next steps
– Further improve the plasma and coil configuration

– Complete assessment of QPS physics properties

– Assess flexibility with VF, TF, and OH solenoid

– Improve engineering design and cost/schedule
estimates

– Design, cost & schedule review in early 2003

• 2003-2007:  R&D, design and construction

• Mid-2007: first plasma



Summary

• QPS is a compact stellarator that has excellent
neoclassical confinement, good MHD properties,
and connection with a high- ββββ reactor approach

• New element: use of reduced bootstrap current and
quasi-poloidal symmetry at very low R/a

– alignment of B and ∇∇∇∇ B  reduces radial drift and
banana width

– reduced flow damping in poloidal direction

– potential for second stability regime

• QPS design satisfies physics requirements and
engineering constraints; now in conceptual design


