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QPS is a very low aspect ratio
(A = 2.7) Quasi-poloidal stellarator

• <R0> = 0.9 m, <a> = 0.33
m, <B> = 1 T ± 0.2T for
1sec, Ip £ 150 kA,
PECH = 0.6-1.2 Mw,
PICH = 1-3 Mw

• This experiment will test:
– Equilibrium robustness
– Neoclassical and

anomalous transport
– Stability limits up to

<b> = 2.5%
– Bootstrap current effects
– Reduced poloidal

viscosity effects on shear
flow transport reduction

– Configurational flexibility



Our transport analysis has focused on
optimization targets and comparisons

between configurations

• QOS optimizations
(1996 - 1999)
– J*, J, Bmin, Bmax

– DKES

• QPS optimizations
(2000 - present)
–  eeff

– Poloidal symmetry
– DKES

However, with the QPS configuration becoming fixed, we are
shifting over to flexibility studies and transport predictions.

• NEO eeff, Poloidal symmetry

• DKES
– Setup, mode selection
– Parallel runs
– Energy integration

• DELTA5D Monte Carlo
– Global full-f model
– ICRF heating
– NBI heating efficiency
– Alpha losses
– Bootstrap current

• 1-1/2 D model

Evaluation ToolsOptimization Strategy



QPS Flexibility Studies

• Modular coil currents
can vary ±25%

• Vertical field currents
can vary ±100 kA

• Toroidal field currents
can vary ±70 kA

Mod 4
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Mod 2
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(split coil)
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QPS Flexibility Studies - effect on |B|
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transport
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Nominal
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The DKES (Drift Kinetic Equation Solver) provides the
full neoclassical transport coefficient matrix (multi-helicity)
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(i.e., to carry out the above integrals, one will need to
generate a 2-D matrix of G’s vs. these parameters for

each flux surface)

• W. I. Van Rij, S. P. Hirshman,
Phys. Fluids B 1, 563 (1989)

• Variational: provides upper
and lower bounds on dS/dt

• Expands f in Fourier-Legendre
series



DKES perfomance, memory and
residuals limitations
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 DKES model

0.0001

0.001

0.01

0.1

1

10

100

1000

10-5 0.0001 0.001 0.01 0.1 1 10

L
11

n/v

QPS_080301

E/v = 0.0001

E/v = 0.001

E/v = 0.04
E/v = 0.01

E/v = 0.1

E/v = 0

E/v = 0.4

ECH electrons

ICH electrons

ICH ions

ECH ions

These ranges are based on the
maximum n, T in the profile,
ef/kT(a) = 1, and looking from
thermal energy to 9 times thermal
(as sampled by velocity integrals
for c)
- ECH electrons:

7x10-5 < n/v < 10-3

8x10-5 < E/v < 2x10-4

- ECH ions:
6x10-3 < n/v < 7x10-2

10-2 < E/v < 3x10-2

- ICH electrons:
3x10-3 < n/v < 4x10-2

5x10-5 < E/v < 2x10-4

- ICH ions:
2x10-3 < n/v < 3x10-2

2x10-3 < E/v < 6x10-3

Note: these L11’s are based on
the gb4 device.

DKES transport dependencies show that both
L11 µ n1/2 and L11 µ 1/n regimes are accessed.



NEO code provides eeff
3/2 ~ D1/n, c 1/n.  Comparison of

different configurations:
 NEO eeff code
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DKES L11 transport coefficient at Er/v = 0 shows similar
trends at low collisionality among QPS devices as NEO

eeff
3/2 coefficient  DKES model
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DKES L11 coefficient demonstrates
sensitivity of transport to coil current

optimization
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DKES L31 coefficient (bootstrap
current for recent QPS device (411)
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† 

L31 =
t0 + t1/ 2(n /v)1/2 + t1(n /v) + t3 / 2(n /v)3/2 +K

b0 + b1/ 2(n /v)1/2 + b1(n /v) + b3 / 2(n /v)3/2 +K

DKES results
(error bars indicate upper/lower bounds)



Comparison of DKES predicted bootstrap
current profiles with collisionless limit

• Collisionless limit based on
BOOTSJ code of L. Berry/J.
Tolliver - includes damping
to avoid singularities at
rational surfaces

• Based on:
•  K.C. Shaing, B.A. Carreras, N. Dominguez,

V.E. Lynch, J.S. Tolliver,  "Bootstrap current
control in stellarators", Phys. Fluids B1, 1663
(1989)

• K.C. Shaing, E.C. Crume, Jr., J.S. Tolliver,
S.P. Hirshman, W.I. van Rij.  "Bootstrap
current and parallel viscosity in the low
collisionality  regime in toroidal plasmas",
Phys. Fluids B1, 148 (1989).

•  K.C. Shaing, S.P. Hirshman, J.S. Tolliver
"Parallel viscosity-driven neoclassical fluxes in
the banana regime in nonsymmetrical Toroidal
plasmas", Phys. Fluids 29, 2548 (1986).
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Monte Carlo procedure for estimating
global energy lifetimes (DELTA5D code)

Typical initial Maxwellian particle
loading for T = 500eV (1 - y/ymax)2

• start with particles distributed
over cross section using PDF’s
consistent with assumed
profiles and local Maxwellians

• follow ensemble in time,
replacing particles (consistent
with initial PDF’s) as they leave
outer surface

• Record energies of escaping
particles - use to calculate tE

• Follow until approximate
steady–state is achieved

• Vary potential (with fixed profile
shape) to achieve global
ambipolar balance of
electron/ion particle loss rates

DELTA5D Monte Carlo
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Power flows for global single species test particle
simulations:

  

dWtest,ion

dt
= Qii + Qei( )Ú d3v

+
r 
J •

r 
E d3vÚ

+
dWsurface-loss

dtÚ dS

+ Nreplacement T (y ) + ef[ ] d3vÚ

(+/-) (1)

(+/-) (2)

(-) (3)

(+/-) (4)

dWtest, electron

dt
= Similar equations

• To achieve steady state, in a
reasonable simulation time,
terms (1) and (2) need to be
balanced:

• For Er = 0

– can include pitch angle
and energy scattering if
Qii + Qei is weak during
particle confinement time

– or can include only pitch
angle scattering

• For Er ≠ 0

– rely on Qii + Qei term (1)
to redistribute energy
loss/gain from term (2)

– or can remove kinetic
energy loss/gain (due to
eDf) each time step

DELTA5D Monte Carlo



Monte Carlo studies of global ion confinement
times for ICH parameters between devices (all at

same R0) and for different coil currents
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Monte Carlo studies of global ion confinement
times for ECH parameters between devices

(all at same R0) and in QPS for different coil currents
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Monte Carlo lifetimes for ICH heated gb4 configuration
[n(0) = 8.3 x 1019 m-3, Te(0) = 500eV, Ti(0) = 500 eV, flat density profile, parabolic**2

temperature profile]

Global ambipolarity condition
[i.e., with f(r) profile fixed] Global electron/ion energy lifetimes
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Monte Carlo lifetimes for ECH heated gb4 configuration
[n(0) = 1.8 x 1019 m-3, Te(0) = 1400eV, Ti(0) = 150 eV, flat density profile,

parabolic**2 temperature profile]
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High b configuration: |B| contours
 and flux surfaces become aligned

b=0%:

b=23%:

NFP* j=0° NFP* j=90°  NFP* j=180°

NFP* j=0° NFP* j=90°  NFP* j=180°



a-particle slowing-down simulations show these devices
indicate very good confinement with increasing b.

The configuration was scaled to <B> = 5T and R0 = 10m
for alpha confinement studies

 Transport analysis
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ICRF heating in stellarators depends on wave
propagation, geometry of the resonant regions and the

orbit confinement of the resonant ions

• Confinement of ICRF heated ions
is examined by following a
collection of orbits

• Intersections of |B| contours with
flux surfaces are determined for
inner half of the plasma volume

• Ions are started out at B = Bres
with v||0/v = 0 (equivalent to e/m =
Bres)

• Ions leaving the outer surface are
removed from the population

constant |B|
surfaces

flux
surface



Local Monte-Carlo equivalent Local Monte-Carlo equivalent quasilinearquasilinear
ICRF operator (developed by J. ICRF operator (developed by J. CarlssonCarlsson))
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Monte Carlo simulation of ICRF
heating in stellarators

• Quasi-linear ICRF diffusion operator
(follows particles as they are kicked up
in energy)

– Intersections of |B| contours with flux
surfaces determined

– Ions are started out at B = Bres with
v||0/v = 0 (equivalent to e/m = Bres)

• Simple RF wave-field model:
k|| = n/2pR0, n = 1, k^ = 0
 E+ = E+

0 exp[ -(r - 0.3)2],  E- = 0

• Eventual goal is to incorporate particle
simulation model with ORNL RF Full Wave
codes
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ddf f Bootstrap Current CalculationBootstrap Current Calculation
[based on method of A. Boozer and M. Sasinowski, Phys. Plasmas 2 (1995) 610]

Substituting f = fMeb into df
dt

= C(f) gives:

db
dt

- Cl (f) = -
1
fM

∂fM

∂y
∂y
∂t

where Cl = linearized collision operator =
C(f )

f

Now, define d = -
b

∂ ln fM / ∂y
= particle deviation from initial y surface

Expand f, assumin g d is small: f = fM exp -
∂ ln fM
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[This allows one to take int o exp licitly account the cancellation
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Specializing to the bootstrap current (m = 0, n = 0), the above
int egral can be reduced to a sum over particles, followed by
an int egration over velocity:

    

The plasma current is then given by:

j||,mn = q v| |Ú f e-2pi (nj -mq )d3vd3x

Which, usin g the above expansion for f, can be written as:

j||,mn =
-q v| |
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d3x
JÚ

where J  = m0(G + i I) / B2
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Bootstrap current levels for a QO device and itsBootstrap current levels for a QO device and its
axisymmetric axisymmetric equivalent show agreementequivalent show agreement
between DKES and the between DKES and the ddf f particle code:particle code:

((JJBSBS
nonnon--axiaxi//JJBSBS

axiaxi  = -1.309 from DKES and = -1.32 from = -1.309 from DKES and = -1.32 from ddff))
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Neutral beam heating
efficiency calculations: NCSX
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Neutral beam heating efficiency
calculations: exit energies and pitch angles
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Neutral beam heating efficiency
calculations: B and Rtan scaling
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Neutral beam heating efficiency
calculations: energy scaling
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Neutral beam heating efficiency
calculations: loss locations



Drift island structures near edge of QA
configuration for energetic (40 keV) passing ions
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Conclusions and Future Directions

• QPS has attained low levels of neoclassical transport using a
number of confinement based targets:
– NEO eeff, QP-symmetry, DKES plateau regime coefficients

• Flexibility is attained using 7 independently variable coil currents
– Factor of 40-50 variation in NEO eeff

– Factor of ~10 variation in DKES L11 transport coefficient
– Factor of ~2 variation in Monte Carlo global energy lifetime

• Future efforts will focus on
– Benchmarking of different calculations for QPS configurations
– Incorporate neoclassical viscous damping effects into DKES (H.

Sugama, S. Nishimura, Phys. Plasmas Nov., 2002)
– Develop non-diffusive models



New approaches to transport: non–diffusive scaling
• Verification of asymptotic diffusive behavior using tracer particles can be

problematical in stellarators due to:
– Finite system size
– Convective losses
– Characteristic step size for some particle classes not << system size

• Other approaches: PDF of times at which particles reach a fixed
displacement, fractional derivative equations, finite size Lyapunov
numbers
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