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QPS (Quasi-Poloidal stellarator) incorporates
compactness and unique physics goals

• QPS is a very low aspect ratio (A = 2.7)
Quasi-poloidal (QP) stellarator that is
unique in the world fusion program

• The QPS physics design meets the
following requirements:
Equilibrium robustness at low A
Neoclassical << anomalous transport
Reduced poloidal viscosity effects on

shear flow -> transport reduction
Stability limits up to <b> = 2.2%
Significant configurational flexibility
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The QPS physics studies have been enhanced by
improvements in our design and analysis tools:

• Improved optimizations
– Merged coil/plasma optimizations

• allowed significant cost reductions in coil design (Dec., 2002)
– Effective ripple transport target

• improved transport properties (~50-100% increased tE)
– New flux surface quality target

• Bnormal.vacuum = 0 on b = 2% VMEC surface
• Less configurational change with b

• Improved flexibility and physics analysis tools
– Fixed coil geometry/variable coil current optimizations

• Transport
• Stability

– VMEC/DKES
– AORSA RF code applied to 3D equilibria
– Finite-n MHD stability analysis with Terpsichore
– Viscosity/flow damping
– Runaway electron losses
– Alfvén continuum calculation for 3D systems
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Outline

• Performance predictions
• Confinement properties

– Low collisionality eeff coefficient, QP symmetry
– Diffusive DKES neoclassical transport coefficients
– Monte Carlo global energy lifetimes
– Viscosities/flow damping effects
– Runaway electron losses

• Flexibility Properties
– Transport optimization/de-optimization
– Iota control: island avoidance

• Conclusions
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QPS performance predictions show for normal regimes (H = 1)

neoclassical power flows << anomalous.

• Simple 1-D transport model
used to asses performance

• Fixed density/power
deposition profiles

• Neoclassical (Shaing-
Houlberg Er dependence
with overall scaling by eeff

3/2)
• Anomalous ISS95 transport

– Anomalous transport scaled
for various H-ISS95 factors 0
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With moderate Power ECH (1.5!MW), H > 2, Te(0) = 2-3
keV, Ti(0) = 0.2-0.5 keV

D. Mikkelsen, PPPL
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Four heating scenarios have been analyzed that allow

exploration of significant parameter ranges
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    = require successful transport reduction (H = 4)
The following cases will require development of

high density heating techniques.
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Quasi-poloidal symmetry: understand its effect on neoclassical

transport, bootstrap current, and plasma flow damping.

• In order to develop a sound scientific basis for the
QPS stellarator we use a spectrum of tools as
measures of transport:
– Effective ripple1 eeff

3/2: asymptotic low collisionality transport
– QP symmetry: ratio of energy in non-symmetric modes (m ≠ 0)

to that in symmetric modes (m = 0)
– Diffusive transport coefficient matrix (DKES code)

• Will be integrated into 1-D models in the near future
• Monte Carlo df used to supplement low collsionality regime
• Viscosities: related to DKES coefficients by recent work of

Sugama2

– Global Monte Carlo energy lifetimes
1V.V. Nemov, et. al, Phys. Plasmas 6, 4622 (1999).
2H. Sugama, S. Nishimura, Phys. Plasmas 9, 4637 (2002).
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Our design has made continuing improvements in the
effective ripple eeff

3/2
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Our design has made continuing improvements in the
effective ripple eeff
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DKES transport coefficients show similar
improvements in our design as eeff

3/2
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Monte Carlo ion energy lifetime estimates show
improved neoclassical confinement over previous

configurations:
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Monte Carlo analysis of runaway electrons provides information

about confinement and loss locations

ECH regime: n(0) = 2x1019 m-3,
Te(0) = 1.4 keV, Ti(0) = 0.15 keV
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QPS Transport Enhancement: understand the
unique effects of quasi-poloidal symmetry on

anomalous transport suppression

• Enhanced confinement regimes in tokamaks have been
attributed to electric field shear
– Shredding of turbulent eddys

• This can be driven by a variety of sources
– Self-amplified background plasma flows
– Flows driven by external sources (beams, RF)
– Turbulence
– Pressure gradient drive

• The QPS design has achieved several goals that will allow a
better understanding of enhanced confinement regimes in
compact stellarators
– Neoclassical transport << anomalous
– Poloidal flow damping reduced from that of equivalent tokamak
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Transport Enhancement Mission: Poloidally symmetric devices

offer unique flow damping characteristics that can help access
enhanced confinement regimes
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Further reductions in poloidal viscosity occur when
ambipolar electric fields are present.
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Ambipolar electric fields provide a source for self-
generated poloidal flows (QPS can access both

electron and ion roots)

ECH [n(0) = 2 x 1019 m-3] ICH [n(0) = 8 x 1019 m-3]
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QPS offers substantial flexibility through 9

independently variable coil currents

• Flexibility is a significant advantage
offered by stellarator experiments

• Flexibility will aid scientific
understanding in:
– Flux surface fragility/island avoidance
– Neoclassical vs. anomalous transport
– Transport barrier formation
– Plasma flow dynamics
– MHD stability

• QPS offers flexibility through:
– 5 individually powered modular coil

groups
– 3 vertical field coil
– toroidal field coil set
– Ohmic solenoid

• Variable ratios of Ohmic/bootstrap
current
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QPS can vary low collisionality levels by a factor of
~25 and QP symmetry by a factor of ~10
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Collisional transport (n!≤!plateau regime) shows a
factor of ~25 variation.  Poloidal viscosities show

factor of 5-30 variation.
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Monte Carlo global energy lifetimes (Er = 0) indicate
that a 50 - 100% variation is possible.

ICH regime: n(0) = 8x1019 m-3, Te(0) = 0.5
keV, Ti(0) = 0.5 keV

ECH regime: n(0) = 2x1019 m-3,
Te(0) = 1.4 keV, Ti(0) = 0.15 keV
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Flux surface fragility: Coil current optimizations coupled with

Ohmic current allow low shear iota profiles in QPS at b = 0.

As in the W7-AS approach, these transform profiles can be
placed in windows that avoid low order rational surfaces
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Flux surface fragility: Good surfaces and resonance
avoidance is possible for b > 0 with Ohmic current.
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We have started the development of tools to
analyze AE gap modes in compact stellarators

QPS Alfvén continua from STELLGAP code
[D. Spong, et al., Phys. Plasmas 10 (2003) 3217]
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Alpha confinement is adequate for ignited power
balance.  Localized nature of losses may allow

removal for direct conversion
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Conclusion:

• Equilibrium robustness at low A

– PIES and field line following (AVAC) analysis shows good
surfaces for a range of b’s with:
• Ohmic/bootstrap current control

• Coil current optimization

• Transport
– Can access interesting parameter regimes

– Can control transport in measurable ways

– Lowered poloidal viscous damping relative to tokamak
• Improved control over electric field shear

• Stability
– Can vary ballooning stability limits and test with access to

enhanced confinement regimes

• Flexibility
– Significant control demonstrated over: transport, iota, flux surface

robustness, MHD stability


