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• Transport analysis tools
• Transport optimization targets
• Configurations considered
• Electron and ion neoclassical losses
• Energetic orbit losses



Transport analysis tools

• General purpose stellarator particle simulation code (DELTA5D)
– thermal electron/ion transport, bootstrap current
– alpha particles
– neutral beams, ICRH tails
– uses MPI to achieve near linear speedup with number of processors

• Drift Kinetic Equation Solver (DKES)
– variation of bootstrap current with collisionality and electric field
– local diffusion coefficients          ambipolarity condition
– integrate over profiles to obtain global lifetimes
– uses shared memory OpenMP parallelism to achieve ~ x 3 speedup

(with Ed D’Azevedo, ORNL CCS Division)
• Other qualitative measures: J, Bmin, Bmax, |B| contours



Transport optimization targets for
compact drift-optimized stellarators

• Longitudinal adiabatic invariant J =              constant on flux
surface

• Bmin, Bmax alignment with ψ
• Drift Kinetic Equation Solver (DKES) transport coefficients
• Nearby symmetries in |B|

– quasi-poloidal
– quasi-helical

dl v||∫



Transport analysis of 2.5 < A < 3.0 candidate configurations:

A2.5_M_B1.3 A3.0_M3_B1.9 A2.7_M2_B2.0τISS95 = 2.08 msec
τE,global = 8.5 msec

τISS95 = 2.98 msec
τE,global = 7.0 msec

τISS95 = 0.79 msec
τE,global =  1.3 msec

Lifetimes are based on:

Te(0) = Ti(0) = 1.8 keV
n = 3 x 1013 cm-3

ν*e = 0.02, ν*i = 0.018
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Free boundary A2.5_M2_B1.3 configuration (from coils) yields
very similar transport as original fixed boundary case:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

Z
 (

m
)

R (m)

Nfp*phi = 360

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

Z
 (

m
)

R (m)

Nfp*phi = 180

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

Z
 (

m
)

R (m)

Nfp*phi = 90

0

1 0

2 0

3 0

4 0

5 0

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

τ E
(m

se
c)

time (sec)

Electron τ
E

Ion τ
E

free boundary

free boundary

fixed boundary

fixed boundary

green = free
boundary

blue = fixed
boundary



Profiles used in transport studies

• n = constant, Zeff = 1
• (1 - r2)2 Te, Ti profiles
• eφ(r)  varies inversely with kTe

• ion root
• electron root to be investigated
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Projected QO/CE heating scenarios include
both ECH and ICH regimes
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Confinement in the 2 field period, A = 2.5 configuration
covers a range from τE,global = (1.4 to 3.6)τE,ISS95 for

different ECRF and ICRF heating scenarios

ECH
B = 1T

16.2 17.4 16.2 8.1

ECH
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4.27 1.95 2.1 1.5
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Transport analysis in regimes with (Te > Ti) for the 2 field period
A=2.5 device shows tendency to improve with increasing β:

0

5

1 0

1 5

2 0

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

τ gl
ob

al
, 

e+
i(m

se
c)

Simulation time (sec)

<β> = 0.001

<β> = 0.005

<β> = 0.015

Te = 1.8 keV, Ti = 0.5 keV, n = 3 x 1013 cm-3

ν*e =  0.019, ν*i = 0.233



Energetic particle loss simulations show exit pitch angle, energy
and exit position of ions on outer flux surface
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Applications of DKES to QO transport:

• Used in the optimizer
• Collisional bootstrap current
• Ambipolarity studies

– Initially, use DKES for both electron and ion fluxes
– Then hybrid model: DKES electron flux with ion particle

flux from particle-based calculation



Transport optimizations using the DKES transport target has
resulted in confinement improvements for earlier devices.  We
will also be applying these techniques to the more recent 2.5 <

A < 3.0 devices.
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Collisionality dependence of bootstrap current
coefficient (results shown are for A2.5_M2_B1.3 device)

DKES monoenergetic particle/energy
transport coefficient
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Self-Consistent ambipolar electric field calculations
- initially DKES will be used offline for electrons and ion to obtain φ(r) for DELTA5D
- next step is to use DKES for electron flux coupled with DELTA5D for ion flux
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High β configurations achieve good confinement
through the diamagnetic modifications of |B|:

• improved quasi-poloidal symmetry
• radial structure in the B0,0 component leading to significant

poloidal ∇ BxB drifts

Bmn spectrum at <β> = 23%



Through its modification of |B|, high β changes both the thermal
neoclassical transport and bootstrap coefficient
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α-particle slowing-down simulations show these devices
indicate very good confinement with increasing β.
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Summary

• Transport analysis indicates best confinement times in the 2
field period A = 2.5 configuration

• Different heating options and magnetic field variation
(0.5 – 1T) allow exploration of different confinement regimes
– ECH: τneo/τISS95 from 1.4 to 2
– ICH: τneo/τISS95 from  3 to 3.6

• Reconstruction from coils preserves transport properties
• High β configurations offer improved confinement with

increasing β
– Have achieved lowest alpha losses (~12%) of any of our configurations


