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Significant gains in ion confinement have been
made since our earlier reference configuration:

• DKES transport
targets have led to
improved confinement

• Rmin, Rmax targets
have allowed more
open area in center
and higher R0

• NESCOIL target has
decreased coil
complexity
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Plasma transport in recent 2 field period QOS
devices is being analyzed using:

• Orbits, |B| structure, J invariant contours
• NEO code: 1/ν εeff

3/2 coefficient
– V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn,

Phys. Plasmas 6, 4622 (1999).

– Applicability to quasi-poloidal systems, comparison to DKES

• DKES (drift kinetic equation solver)
– Electric field, collisionality, radial dependence

– Applications: ambipolar electric field, bootstrap current,
diffusive lifetime

– Convergence issues

• Global Monte Carlo energy lifetimes
– Heating scenarios, comparison to ISS95

– Electric field effects, steady-state issues
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The |B| spectrum achieves its highest degree of
quasi–poloidal symmetry closest to the magnetic axis
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Deeply trapped orbits in reference
configuration and ATF
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Comparison of ε3/2 for our reference configuration using
simple helical ripple εh = (Bmax - Bmin)/(Bmax + Bmin) and  εeff

3/2 from
the NEO calculation shows significant reduction from εh:
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Scaling of εeff
3/2 for our reference case with artificially

improved QP symmetry/comparison among machines
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With selection of a reference configuration, the
focus of transport calculations is shifting more to

in depth studies of a single device

• DKES data base (flux surface, collisionality, electric field)
– energy integration

– self-consistent ambipolar electric field

– bootstrap current dependence on collisionality

– global lifetimes

– comparison with Monte Carlo calculations of local diffusivities

• Explore the accessible parameter space
– Heating scenarios: ECH, ICH

– Magnetic field variations: 1 and 0.5 Tesla
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DKES transport dependencies show that both
L11 ∝ ν1/2 and L11 ∝ 1/ν regimes are accessed.
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These ranges are based on the
maximum n, T in the profile,
eφ/kT(a) = 1, and looking from
thermal energy to 9 times thermal
(as sampled by velocity integrals
for χ)
- ECH electrons:

7x10-5 < ν/v < 10-3

8x10-5 < E/v < 2x10-4

- ECH ions:
6x10-3 < ν/v < 7x10-2

10-2 < E/v < 3x10-2

- ICH electrons:
3x10-3 < ν/v < 4x10-2

5x10-5 < E/v < 2x10-4

- ICH ions:
2x10-3 < ν/v < 3x10-2

2x10-3 < E/v < 6x10-3

Note: these L11’s are based on an
earlier A=2.5 device.  Current
results are a factor of 2-3 lower.

 DKES model
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Ambipolarity condition using DKES coefficients

Ion, electron fluxes from DKES
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Monte Carlo procedure for estimating global
energy lifetimes (DELTA5D code)

10

100

1000

0 0.2 0.4 0.6 0.8 1

E
(e

V
)

ψ/ψ
max

Temperature
Profile

Typical initial Maxwellian particle
loading for T = 500eV (1 - ψ/ψmax)2

• start with particles distributed over
cross section using PDF’s
consistent with assumed profiles
and local Maxwellians

• follow ensemble in time, replacing
particles (consistent with initial
PDF’s) as they leave outer surface

• Record energies of escaping
particles - use to calculate τE

• Follow until approximate
steady–state is achieved

DELTA5D Monte Carlo
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Power flows for global single species test particle
simulations:
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• To achieve steady state, in a
reasonable simulation time,
terms (1) and (2) need to be
balanced:

• For Er = 0

– can include pitch angle
and energy scattering if
Qii + Qei is weak during
particle confinement time

– or can include only pitch
angle scattering

• For Er ≠ 0

– rely on Qii + Qei term (1)
to redistribute energy
loss/gain from term (2)

– or can remove kinetic
energy loss/gain (due to
e∆φ) each time step

DELTA5D Monte Carlo
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QOS reference case and ATF Er = 0 energy lifetimes for
higher collisionality ICH heated scenarios

DELTA5D Monte Carlo
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QOS reference case and ATF Er = 0 energy lifetimes for
low collisionality ECH heated scenario

DELTA5D Monte Carlo
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High collisionality (ν1/2 regime) ICH heated ions
show strong sensitivity to the electric field

DELTA5D Monte Carlo
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Low collisionality (1/ν regime) electrons show less
sensitivity to Er in similarity to DKES calculations

DELTA5D Monte Carlo
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•  These results are based
on the ion root.  Future
calculations will examine
the electron root.

• Here we have balanced
terms (1) and (2) on slide
12 by keeping the kinetic
energy constant.  Higher
confinement times result if
energy scattering is
included and total energy
is fixed, but a steady state
has not yet been
achieved.
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Conclusions and Summary
• Good progress has been made in developing quasi-poloidal configurations

– improved transport
• factor of 2-3 since Fall, 2000

• Higher weight on DKES targets -> core transport most relevant for a CE device

– accomplished while lowering coil complexity and avoiding “thin waist” region

• New tools applied and existing methods refined
– Nemov, Kernbichler NEO code

– DKES

– Monte Carlo

• Selection of a reference allows more in depth transport analysis
– DKES database (flux surface, collisionality, electric field)

• ambipolar condition, global τ, comparison with Monte Carlo local D’s, bootstrap current

– Explore different heating regimes (ECH, ICH)

– Electric field effects

• CE device with ECH and ICH can explore a range of transport regimes
– ECH: 1-2 times ISS95 (with Er) -> electrons dominate losses

– ICH: 6-20 times ISS95 (with Er) -> ions dominate losses


