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Significant gains In ion confinement have been
made since our earlier reference configuration:

 DKES transport
targets have led to
Improved confinement

* R Rnafargets
have allowed more
open area in center
and higher R,

« NESCOIL target has
decreased coll
complexity
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Plasma transport in recent 2 field period QOS
devices is being analyzed using:

Orbits, |B| structure, J invariant contours
NEO code: 1/n e % coefficient

— V. V. Nemov, S. V. Kasilov, W. Kernbichler, M. F. Heyn,
Phys. Plasmas 6, 4622 (1999).

— Applicability to quasi-poloidal systems, comparison to DKES

DKES (drift kinetic equation solver)
— Electric field, collisionality, radial dependence

— Applications: ambipolar electric field, bootstrap current,
diffusive lifetime

— Convergence issues
Global Monte Carlo energy lifetimes

— Heating scenarios, comparison to 1ISS95
— Electric field effects, steady-state issues
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The |B| spectrum achieves its highest degree of
guasi—poloidal symmetry closest to the magnetic axis
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Deeply trapped orbits in reference
configuration and ATF

500 eV ion orbitin gb4_nesc_12b

(initial conditions: r/a = 0.5, v”/v =0.1)
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Comparison of €32 for our reference configuration using
simple helical ripple &, = (B.x- Bm)/(B yand e from
the NEO calculation shows significant reduction from %
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Scaling of e %2 for our reference case with artificially
Improved QP symmetry/comparison amoni machines
Kernbichler NEO code
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With selection of a reference configuration, the
focus of transport calculations is shifting more to
In depth studies of a single device

« DKES data base (flux surface, collisionality, electric field)
— energy integration
— self-consistent ambipolar electric field
— bootstrap current dependence on collisionality
— global lifetimes
— comparison with Monte Carlo calculations of local diffusivities

 Explore the accessible parameter space

— Heating scenarios: ECH, ICH
— Magnetic field variations: 1 and 0.5 Tesla
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DKES transport dependencies show that both

111 g n*2and L11

These ranges are based on the 1000 ¢
maximum n, T in the profile, i
ef /kT(a) = 1, and looking from 100

thermal energy to 9 times thermal
(as sampled by velocity integrals

for c) 10
- ECH electrons:
7x10° < nlv <103 1
8x10° < E/v < 2x104
- ECH ions:
6x102 < n/v < 7x10-2 L11
102 < E/v < 3x102
- ICH electrons: 0.01
3x103 < n/v < 4x102 ;
5x10° < E/v < 2x10*4
- ICH ions: 0.001 ¢
2x1073 < n/v < 3x102
2x103 < E/v < 6x10°3
0.0001 [
Note: these L11’s are based on an
earlier A=2.5 device. Current 10°

results are a factor of 2-3 lower.
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Ambipolarity condition using DKES coefficients

lon, electron fluxes from DKES
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Monte Carlo procedure for estimating global
energy lifetimes (DELTAS5SD code)

DELTASD Monte Carlo

Typical initial Maxwellian particle
loading for T =500eV (1 -y /Y ,,,)?

« start with particles distributed over
cross section using PDF’s
consistent with assumed profiles
and local Maxwellians

« follow ensemble in time, replacing
particles (consistent with initial
PDF’s) as they leave outer surface

 Record energies of escaping
particles - use to calculate t .

e Follow until approximate
steady—state is achieved
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Power flows for global single species test particle

 To achieve steady state, in a
reasonable simulation time,
terms (1) and (2) need to be
balanced:

ForE, =0
— can include pitch angle
and energy scattering if
Q; + Q. Is weak during
particle confinement time

— or can include only pitch
angle scattering

ForE.* O
— rely on Q; + Qg term (1)
to redistribute energy
loss/gain from term (2)

— or can remove kinetic
energy loss/gain (due to
eDf ) each time step
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simulations:
(+/-) (1)
dWestlon — dql (?e')
Ly E dv (+)  (2)
\dWedge-Ioss
Fommmds () (3)

+ (\j\lreplacementT(w )dBV (+) (4)

dWest electron
at

Smilar equations
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QOS reference case and ATF E, = O energy lifetimes for
higher collisionality ICH heated scenarios

ICH1 DELTA5D Monte Carlo

[n(0) =8.3x 10 m>, T_(0) = 0.5keV,
T (0) =0.5 keV, <B> = 1T]
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QOS reference case and ATF E, = 0 energy lifetimes for
low collisionality ECH heated scenario

ECH1 DELTASD Monte Carlo

[N(0)=1.8x 10 m>, T_(0) = 1.4keV,
Ti(O) = 0.15 keV, <B> = 1T]
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High collisionality (n? regime) ICH heated ions

show strong sensitivity to the electric field
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Low collisionality (1/n regime) electrons show less
sensitivity to E, in similarity to DKES calculations

25 . . , : DELTASD Monte Carlo

« These results are based
on the ion root. Future
calculations will examine
the electron root.

15 m 1 ¢ Here we have balanced

terms (1) and (2) on slide
ef (@)/kT =1 12 by keeping the kinetic
0 I ° |  energy constant. Higher
ef (@)/kT, =0 confinement times result if
energy scattering is
included and total energy
Is fixed, but a steady state
has not yet been
achieved.
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Conclusions and Summary

Good progress has been made in developing quasi-poloidal configurations

— improved transport
 factor of 2-3 since Fall, 2000
* Higher weight on DKES targets -> core transport most relevant for a CE device

— accomplished while lowering coil complexity and avoiding “thin waist” region
New tools applied and existing methods refined

— Nemov, Kernbichler NEO code

— DKES

— Monte Carlo

Selection of a reference allows more in depth transport analysis

— DKES database (flux surface, collisionality, electric field)
« ambipolar condition, global t, comparison with Monte Carlo local D’s, bootstrap current

— Explore different heating regimes (ECH, ICH)
— Electric field effects
CE device with ECH and ICH can explore a range of transport regimes
— ECH: 1-2 times ISS95 (with E,) -> electrons dominate losses
— ICH: 6-20 times I1SS95 (with E,) -> ions dominate losses
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