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Appendix A.  Codes for Physics Assessments and Design

Physics and engineering design of the QPS experiment required development of new tools or
extension of existing tools for magnetic configuration optimization, MHD equilibrium and stability,
neoclassical transport and energetic orbit confinement, and design of complex coils.  The magnetic
configuration optimization procedure is described in Sect. 3.1 and is implemented in the ORNL
code called STELLOPT.

A.1.  MHD Equilibrium and Stability Codes

A.1.1.  VMEC

The ORNL VMEC equilibrium code [1] has been used for the routine generation of three-
dimensional (3-D) equilibria for stability and transport studies, and it has been incorporated in the
configuration optimizer for generating candidate QPS configurations and assessing coil set
flexibility.  The VMEC code solves the 3-D equilibrium equations using a representation for the
magnetic field that assumes nested flux surfaces.  It uses an inverse moments method, in which the
geometric coordinates R and Z are expanded in Fourier series in both a poloidal angle variable and
the toroidal angle(for three dimensions).  The coefficients Rmn and Zmn in this series expansion are
functions of the normalized toroidal flux s, where s = 0 is the magnetic axis (which can be a helical
curve in three dimensions) and s = 1 is the plasma boundary.  Here, m is the poloidal and n is the
toroidal Fourier mode number.  The boundary Fourier coefficients Rmn(1) and Zmn(1) can either be
constant (corresponding to a "fixed-boundary" equilibrium calculation), or they may be self-
consistently computed from the MHD force balance equation at the plasma-vacuum boundary (for
a "free-boundary" calculation [2]).  Internally, VMEC computes an additional "renormalization"
stream function (λ) which is used to optimize, dynamically and at every radial surface, the
convergence rate in Fourier space for the spectral sum Σ (Rmn2 + Zmn2).  In the original VMEC,
radial mesh gridding is staggered, with the Rmn(s) and Zmn(s) coefficients defined on integral radial
mesh points sj = (j-1)/(Ns-1), where Ns is the number of radial nodes, and the lambda coefficients
on half-integer mesh points interleaving the Rmn, Zmn mesh.  This scheme has been proven to lead
to excellent radial resolution as well as minimal mesh separation (at least for large aspect ratio
plasmas and with limited angular resolution meshes).

VMEC has been used as the primary design tool for all of today’s existing stellarator experiments.
As such, it has been extensively benchmarked against other 3D equilibrium codes  including the
Chodura-Schlüter code, BETA, PIES, and HINT.  In addition, experimental “benchmarking” of
VMEC calculations has occurred via electron fluorescence mapping of vacuum magnetic surfaces in
ATF and HSX (see the HSX web site).  Recently, X-Ray emissivity measurements at finite β on
W7-AS [3] have confirmed the accuracy of the VMEC flux surface calculations.

Significant improvements have been made to the VMEC code in the context of the NCSX and QPS
design efforts.  It has been redifferenced to improve the convergence both on finer angular and
radial meshes as well as for equilibria with a wide range of rotational transform profiles.  In VMEC,
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the inverse equations are cast as second order equations (in radius) for the Fourier components of
R, Z, and λ.  As noted above, λ has been previously differenced radially on a mesh centered
between R, Z nodes, which greatly improved the radial resolution.  This could be done to second
order accuracy (in hs = 1/[Ns-1]) since no radial derivatives of λ appear in its defining equation, Js =
0 (here, Js is the contravariant radial component of the current).  Near the magnetic axis, however, a
type of numerical interchange instability (mesh separation) has been observed as the angular
resolution is refined.  This behavior has prevented the temporal convergence of 3-D solutions with
large numbers of poloidal (m) and toroidal (n) modes (typically, m ~ 6-8 was the practical
limitation).  It has also produced convergence problems for equilibria with low ι (<<1) where field
lines must encircle the magnetic axis many times to define magnetic surfaces.  The new differencing
scheme computes the stream function on the same mesh as R and Z (although the output values of
λ continue to be on the centered-grid for backwards compatibility), which leads to numerical
stabilization of the origin interchange.  To avoid first order errors (in hs) near the plasma boundary
resulting from the new representation of λ, the radial current Js continues to be internally
represented (in terms of λ) on the interlaced-grid.  This maintains the good radial spatial resolution
associated with the original half-grid representation for λ.  As a result, computation of accurate,
convergent solutions with substantially higher mode numbers is now possible using VMEC (m <
20).  This corresponds to much finer spatial resolution and significantly improved force balance in
the final equilibrium state.  It also allows the calculation of equilibria with lower values of ι, which
were difficult to obtain with the previous differencing scheme.

An additional improvement in the output from VMEC includes a recalculation (once the VMEC
equilibrium has been obtained) of the magnetic force balance F ≡ J x B - ∇ p = 0.  The radial (∇ s)
component of F is solved in terms of the non-vanishing contravariant components of B (Bu and Bv)
and the metric elements determined by VMEC, as a magnetic differential equation for Bs.  An
angular collocation procedure (with grid points matched to the Nyquist spatial frequency of the
modes) is used to avoid aliasing arising from nonlinear mode coupling of the Fourier harmonics of
R and Z in the inverse representation of the equilibrium equation.  The accurate determination of Bs,
together with the higher angular resolution afforded by the larger limits on the allowable m,n
spectra in VMEC, permits an accurate assessment for the parallel current (which contains angular
derivatives of Bs) as a function of poloidal mode number, to be performed.

A.1.2.  PIES

Three-dimensional magnetic fields can have magnetic islands and regions of stochastic field lines.
The VMEC code uses a representation of the magnetic field that assumes nested flux surfaces.  The
PPPL PIES code [4] is a 3-D equilibrium code that uses a general representation for the magnetic
field which is capable of calculating equilibria with islands and stochastic field line trajectories.
There is an extensive set of publications on the algorithm, implementation, validation, convergence
properties and applications of the PIES code (see references 9-13, 16-40 in Chapter 4 of the NCSX
PVR documentation).
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The PIES code solves the MHD equilibrium equations using a Picard iteration scheme,

∇  x Bn+1 = J(Bn),

∇  ·Bn+1 = 0,

where Bn is the magnetic field at the start of the nth iteration, and J(Bn) is the current found from the
force balance equation, J x B = ∇ p, and the constraint ∇  · J = 0 .  This scheme is closely related to
the Picard algorithm widely used to solve the axisymmetric Grad-Shafranov equation in the form
∆* ψn+1 = jφ( ψn).  As with the Picard iteration scheme for the Grad-Shafranov equation, under-
relaxation is used to extend the domain of convergence of the Picard iteration.

An advantage of the Picard scheme is that it provides an accurate calculation of resonant pressure
driven currents, which are believed to play an important role in determining island widths  At each
iteration, the code solves for the current from the force balance equation.  Writing J = µB + J⊥ , J⊥
= B x ∇ p / B2 gives, B · ∇ µ = −∇  · J⊥ .  Integration of this magnetic differential equation gives an
accurate method for determining the currents.  In implementing a numerical scheme for solving the
magnetic differential equation, explicit upper bounds on the associated numerical errors were
derived and are used to allow the specification of required tolerances in the code.

As the PIES code iterates, the pressure and current are flattened in islands and stochastic regions.
Several numerical diagnostics in the code allow the determination of the location of these regions.  

The PIES code has been validated by testing of the individual components, by internal checks in the
code that monitor the accuracy with which the equilibrium equations are satisfied, and by
comparison with analytic solutions and with other codes.  Analytic solutions against which the code
has been compared have included Solove’ev equilibria, large-aspect-ratio stellarator expansions,
helical force-free Bessel function equilibria with islands, and analytic solutions for saturated tearing
modes with narrow islands.  Comparison of PIES with other codes has included: comparison with
axisymmetric j-solver equilibria for TFTR and DIII-D; comparison with Biot-Savart vacuum field
solvers; comparison with marginal stability for tearing modes calculated by a linearized resistive
time-dependent code; and comparison with VMEC [5].  Ref. [5] contains a careful comparison
between the VMEC code and the PIES code solutions.  The devices modeled were the ATF and TJ-
II stellarators, for transforms where low order rationals were absent.  The flux surface shape,
location of the magnetic axis and the value of ι  as a function of flux surface were monitored as a
function of β and radial resolution.  An extrapolation in radial resolution was used to verify the
quantitative agreement of the codes.  The comparison with VMEC was continued in reference [6].
There, the rotational transform as a function of radius was in excellent agreement between the two
codes for the W7-X stellarator, at 〈β〉 = 5%.

In the context of the NCSX design effort, several modifications have been made to the PIES code
that have increased its speed by about an order of magnitude, allowing routine application of the
code to evaluate flux surfaces in candidate NCSX configurations. The speed of the code was im-
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proved by modifications to use an improved method for PIES initialization with a VMEC solution,
to convert to a spline representation for field line following, and to store matrix inverses.

Compared with VMEC, the PIES code has a more time-consuming algorithm, which is needed for a
general representation for the magnetic field.  Time is saved by initializing PIES using a converged
VMEC solution.  For this purpose, the under-relaxation scheme in PIES has been modified to
provide an improved coupling to the VMEC solution.  This involves blending with the VMEC field
in the first PIES iteration.  The previous under-relaxation scheme blended the current rather than the
fields.  The under-relaxation was skipped in the first PIES iteration, allowing a large step from the
VMEC field, and slowing the ultimate convergence.  The PIES code follows magnetic field lines as
a preliminary step to solving the magnetic differential equation determining the Pfirsch-Schlüter
current.  Conversion from a Fourier representation to a spline representation of the field has sped
up the code by about a factor of two.

In each iteration of the PIES code, a discretized Ampere's law is solved by the inversion of a block-
tridiagonal matrix.  The elements of the blocks are determined by metric elements of a "background
coordinate system'' that does not change from one iteration to the next, allowing time to be saved by
storing the inverses of the blocks.  For high resolution calculations, this changes the scaling of the
code's execution time from m3n3k to a much more favorable m2n2k where m and n are the number
of the poloidal and toroidal modes retained, and k is the number of radial grid surfaces.

A.1.3.  COBRA

The standard ballooning mode equation in magnetic coordinates is

ργ2 (k⊥
2/B2) Φ - B •  ∇ (k⊥

2/B2)B •  ∇Φ - p′/B2  (k⊥  x B) •  κ Φ = 0     

where k⊥  = ∇φ - q(ψ)∇θ -q′(θ- θk)∇ψ  with θk being the radial wave number.  In this equation, the
first term accounts for inertia, the second term corresponds to the field line bending energy, and the
last term corresponds to the destabilizing drive due to bad curvature (κ) and pressure gradient (p′).
The ORNL ballooning code COBRA [7] solves the ideal ballooning equation for the growth rate γ
using a finite difference scheme.  The ballooning mode equation then becomes a matrix equation.
The computation can be done in an extremely efficient and accurate way by taking advantage of the
Stürm-Lioville character of the ballooning equation.  This property allows one to estimate the
growth rate to 4th order on the mesh step size along the magnetic field line by variationally refining
a 2nd order estimate obtained from a standard matrix method.  Fast evaluation is made possible by
coupling this process to a Richardson extrapolation scheme, that will extrapolate to zero mesh step
size from a few previous evaluations of the growth rates computed on very coarse (and therefore
very efficient to evaluate) meshes.  Important speed enhancements (of hundreds of times) relative to
standard codes have been achieved in this way.  
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A.1.4.  TERPSICHORE

Stability of QPS to global finite-n external kink modes and vertical modes was analyzed using the
3D MHD stability code TERPSICHORE [8]. The code determines the eigenvalues of the ideal
MHD equations by minimizing the perturbed plasma potential energy. It uses a pseudo-plasma
mesh method for evaluation of the magnetic perturbation in the vacuum, treating it as a pressureless
and currentless plasma that can be solved consistently with the interior plasma perturbations.

A.1.5.  AVAC
The ORNL code AVAC [9] integrates magnetic field line equations in real space Cartesian
coordinates. AVAC computes the magnetic field, vector potential, and their partial derivatives due to
a known current distribution in vacuum and without permeable materials. It evolved from the field
line orbit code FLOC [10]. Filaments of each coil center or multi-filaments for the cross-section of
the coils are input into the code. From these closed polygons, the magnetic field is calculated using
the Biot-Savart Law at arbitrary locations in the plasma region. The current distribution is
represented by filamentary circular and/or polygonal current loops. The Cartesian components of
the magnetic field are used in the field line equations to determine the location of the field line in
cylindrical R,φ,Z space. The field lines are integrated to fixed values of the toroidal angle and these

locations are saved to generate puncture plots. The code first locates the magnetic axis and then
expands into the plasma region searching for magnetic field lines that stay inside the coils for a
specified number of field periods. The rotational transform is calculated as the limit (for a large
number of transits) of the ratio of the poloidal transits to the toroidal transits of the field line.

The current distribution is represented by filamentary circular and/or polygonal current loops. The
basic magnetic quantities can be expressed in a relatively simple closed forms for these two special
shapes of current loops. Therefore, calculation of field lines, guiding center orbits, etc. in such field
configurations is carried out by AVAC in a rather straightforward way with high accuracy.

A.2.  Neoclassical Transport Codes

A.2.1.  DKES

The drift kinetic equation solver code (DKES) was developed [11,12] to calculate the full stellarator
neoclassical transport coefficient matrix for realistic magnetic field spectra having arbitrary
helicities.  This code calculates monoenergetic transport coefficients on a single flux surface as a
function of collisionality and radial electric field by using Fourier expansions in toroidal and
poloidal angle variables and Legendre expansions in pitch angle.  By splitting the distribution
function into separate pieces that are symmetric/antisymmetric with respect to time reversal, a
variational form was developed based on the entropy production rate.  The utility of this formulation
is that upper and lower bounds are automatically obtained for all the transport coefficients, resulting
in a convenient measure of the discretization error.  The convergence of the upper and lower bounds
can then generally be improved by adding more terms to the Fourier/Legendre expansions.  This
becomes important at low collisionalities where the distribution function develops increasingly
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narrow boundary layer structures in velocity space near the transitions between the various classes
of trapped and passing orbits.

For a given configuration, the DKES transport matrix can be developed for a range of flux surfaces
after a database of monoenergtic coefficients with dependencies on collisionality, electric field, and
flux surface label is accumulated. Energy integrations must then be performed which involve
multiplying by a Maxwellian times appropriate powers of velocity.  For this purpose, a separate
post-processing code (LIJS) is used.  This code makes two-dimensional spline fits to the
collisionality (ν/v) and electric field (Er/v) dependence of the coefficients and then uses an adaptive
routine to carry out the energy integration.

There are several numerical issues that currently limit the ranges of collisionality and electric field
over which DKES can be applied.  As mentioned above, increasing numbers of Fourier and
Legendre modes must be included as the collisionality is lowered in order to converge the upper
and lower bounds on the transport coefficients.  At some point in this process, one encounters
either memory or CPU time limits which prevent further decreases of collisionality.  These limits
are exacerbated at low aspect ratio due to the larger mixture of helicities in the equilibrium magnetic
field which lead to requirements for larger number of modes in the representation of the distribution
function.  The constraint due to the CPU time limit has recently been extended by using OpenMP
parallelism for certain parts of DKES; on the 4 processor per node IBM-SP Eagle system at
ORNL this has resulted in a speed-up of about a factor of 3.  For low aspect ratio cases without
electric field, we currently find that it is generally not possible to go below the range of ν/v = 10-5 to
10-6 m-1.  When the electric field is finite another numerical limitation enters in; this is caused by ill-
conditioning of the linear system of equations that must be solved to obtain transport coefficients.
This limit is also apparently more severe for low aspect ratio devices.  Evidence of this limit shows
up through high values of the residuals (calculated by substituting the solution back into the
original equations).   This can be partially solved by solving the linear system in quad precision.
However, this can slow the code down by a factor of 20-30 and generally makes it impossible to
afford to be able to add sufficient modes to converge the upper and lower bounds on the transport
coefficients below some level of collisionality.  The above issues as well as the extension of DKES
to higher dimensionality will be addressed by an ORNL Seed Money project which will
reformulate the representation of the distribution function to better take into account the high
gradient boundary layer regions.

A.2.2.  GTC

GTC is a stellarator Monte Carlo transport code [13] developed at PPPL; this is an outgrowth of an
earlier tokamak gyrokinetic turbulence code. It uses domain decomposition in the toroidal angle and
MPI language calls for interprocessor communication to achieve parallelization. The transport
properties of thermal ions and electrons can be studied by tracking the local particle and energy
fluxes through a set of annular flux surfaces.  Both δf and full-f options are available. Hamiltonian

guiding center equations for each particle are advanced using a Runge-Kutta integration scheme.
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As particles leave the outer flux surface they are not replaced, allowing the total number of particles
to decay in time.  We have used this code to benchmark confinement times derived from the
DELTA5D code for isolated cases; however, the different particle replacement strategies has
prevented exact comparisons.

A.2.3.  DELTA5D

DELTA5D is a Monte Carlo transport simulation code that follows groups of particles on different
processors in parallel using the MPI language for inter-processor communication.  It has been
adapted to both the Cray T3E and IBM-SP computers.  DELTA5D is an outgrowth of an earlier
serial Monte Carlo code [14] developed at ORNL.  This solves four coupled Hamiltonian guiding
center equations for each particle, advancing the particles in the two angular coordinates (poloidal
and toroidal angles in Boozer coordinates) and the conjugate momenta.  Equilibrium magnetic
fields are obtained from the VMEC stellarator equilibrium code which are then transformed to
Boozer coordinates. Collisions with a static background plasma consisting of electrons and one
background ion species are simulated using a Monte Carlo collision operator based on pitch angle
and energy scattering terms, taking into account the full velocity-dependent potentials. Collisions
are allocated on a fixed time step ∆tcoll which is chosen so as to maintain ν∆tcoll << 1 and to allow a
smooth granularity in modeling the collisional processes.  The time integration step for the orbit
integration is controlled by the ordinary differential equation solver LSODE which internally
chooses an integration time step so as to maintain a prescribed accuracy level.  As particles leave the
outer flux surface, they may either be replaced back at their initial location (for thermal plasma
global transport options), or, not replaced (in the case of beam and alpha slowing-down options).

DELTA5D currently includes options for following populations of thermal plasma ion and
electrons, alpha particles, injected beam ions, and ICRF tails.  For the case of ICRF tails, a Monte
Carlo version of a quasilinear diffusion operator has been included.  Several options are available
for evaluating thermal plasma confinement; these include calculations of the local diffusivity of
particles started at a single magnetic surface, the energy and particle loss rates through the outer
magnetic surface from particles started out at a single surface, and the energy loss rates and
confinement time for a distribution of particles distributed throughout the volume.  Also, data on
particle and energy fluxes passing through a set of annular flux surfaces is retained.  In addition,
there is an option to evaluate the bootstrap current.  Particle loss locations can be plotted
superimposed on the 3D rendered outer flux surface as a post-processing option.  For the
evaluation and comparison of different QPS configurations, the option of energy loss rates and
confinement time for a distribution of particles distributed throughout the volume has been used
most frequently.
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A2.4.  BOOTSJ

The bootstrap code used in the configuration optimization is based on the physics analysis and
computer implementation described in Ref 15. The underlying analytical model is valid in the long-
mean-free path limit. Limited benchmarking has been performed against the NIFS bootstrap code,
which relies on similar physics, and Monte Carlo and DKES codes. Accurate agreement with the
Monte Carlo code is difficult in the low collision frequency regime of interest due to relatively poor
statistics achieved so far. Similarly, accurate DKES results in this regime are difficult to obtain
because of the large number of pitch-angle modes required to resolve the sharp velocity-space
boundary layers.

A.3.  Coil Optimization Codes

A.3.1.  NESCOIL

The Neumann Equation Solver code NESCOIL [16] is used to find the continuous current
distribution that minimizes B-normal.  NESCOIL uses a Green’s function method to solve for a
current potential on a given coil winding surface (CWS) enclosing the plasma, reproducing the
prescribed plasma magnetic geometry to a high level of accuracy.  To improve the targeting of both
physics objectives (represented by B-normal) and engineering objectives (i.e., low current density,
gentle bend radii of the coils) for QPS, a singular value decomposition (SVD) technique was
developed.  The new code, NESVD, runs as fast as the original NESCOIL code, which enables it to
be placed within an optimizer loop so that the shape of the coil winding surface can be adjusted to
yield further improvements in the target criteria.  A newly developed method [17] based on a genetic
algorithm (GA) is available, if desired, to convert surface current potentials computed in NESCOIL
or NESVD to an optimized set of discrete coils.

A.3.2.  COILOPT

The COILOPT [18] code solves the stellarator magnetic coil optimization problem by determining
the coefficients in an explicit representation of modular coils on a toroidal CWS, together with the
coefficients describing the spatial position of the optimal winding surface.  Target functions in the
optimization problem include the error in the normal component of the magnetic field at the plasma
edge (B-normal), the lengths of individual coils, the minimum coil radius of curvature, and the
minimum separation between adjacent coils and between the coils and the plasma.  The engineering
(geometric) constraints are introduced in the form of weighted penalty functions.  The plasma
boundary shape arises from a fixed-boundary VMEC equilibrium (which results from the physics
optimization process), and the part of the normal magnetic field due to currents in the plasma is
computed with the BNORM code.

Modular coils are represented by a current-carrying filament (corresponding to the center of a coil
cross-section) with a winding law given by a Fourier series for the toroidal and poloidal angles, φi

and θ i, of the ith coil in terms of the curve parametric t:
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φi(t) = Σaikcos(kt) + biksin(kt),
      θi(t) = t + Σcikcos(kt) + diksin(kt).

The parameter t, (0 ≤ t < 2π) must be specified (for example, in terms of arc-length along the coil)
for this representation to be unique. The secular term in the poloidal angle corresponds to the net
poloidal current carried by the modular coils (there is no net toroidal current for modular coils).  All
the calculations reported here were done with the unique choice t = θi for each coil, which precludes
wind-backs in the coils where φ(θ) is not single-valued. (Inclusion of wind-backs may be helpful to
generate coils which are better able to match the desired physics and engineering properties.) It
should be noted that θ = 2πu, Nφ = 2πv, are related to the NESCOIL angles (u, v) defined on the
unit square in a field period.

The coils are constrained to a CWS which is represented in cylindrical coordinates (R, φ,Z), with

stellarator symmetry, by

R = Σ rmn cos(mθ + nNφ),    Z = Σ zmn sin(mθ + nNφ)

COILOPT uses a modified Levenberg-Marquardt method to solve the nonlinear least-squares
problem arising from the approximation of the magnetic field at the plasma edge due to a discrete
set of coil currents.

The primary goal of the coil optimization is to find a solution satisfying engineering feasibility
constraints that will reproduce, or reconstruct, the targeted fixed-boundary equilibrium flux surfaces
and plasma properties when the coils and currents are used to create the external magnetic field in a
free-boundary VMEC equilibrium.  
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