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Abstract

We have examined the confinement properties for a range of small aspect ratio
tokamak/stellarator hybrid devices. Vacuum rotational transform is produced in these
configurations using relatively simple tilted/modulated toroidal magnetic field coils which
can then be supplemented with driven plasma current.  The iota profile is tokamak-like with
a maximum in the center and decreasing towards the plasma edge.  Evaluation of
confinement characteristics is carried out on several levels including: Bmin, Bmax  contours,
longitudinal adiabatic invariant J* contours, guiding-center trajectories, and Monte Carlo
simulations starting with a random ensemble of particles.  We find that confinement
generally improves with increasing driven current, lower ripple, increasing magnetic field,
and increasing electric field.  Another avenue for confinement improvement is through
optimization of the magnetic geometry.  The tools mentioned above for evaluating
confinement suggest several simple criteria as targets for the magnetic optimizations.

I.              Introduction   

Existing stellarators have typically been designed at large aspect ratio and in such a way as
to minimize the amount of plasma current.  However, the economics of fusion power
systems place a premium on compactness.  There has recently been interest1,2,3,4,5,6 in the
possibility that tokamak/stellarator hybrid devices which combine tokamak-like driven
current with vacuum stellarator transform could allow better access to the low aspect ratio
stellarator design space in a manner which would combine the best features of both
devices.  Relative to the tokamak, these systems would offer: less disruption potential,
eased requirements for non-inductive startup, and steady-state operation.  Relative to the
pure stellarator they would offer: larger volume flux surfaces, lower aspect ratio, the
possibility of more robust flux surfaces at high plasma β, and a tokamak-like iota profile
which decreases towards the plasma edge.  The latter feature can have several important
implications: a more toroidally symmetric divertor separatrix and an absence of large
islands near the plasma edge (due to the higher order of the resonances as iota decreases).
In Figure 1 we show 3D visualizations of the outer flux surfaces and filamentary coils for
the 2, 4, and 8 field period versions of the hybrid devices which we shall examine in this
paper.
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Figure 1 - Typical coil configurations and outermost flux surfaces for
2 ,  4 ,  a n d  8  field period low aspect ratio tokamak/stellarator hybrid
devices.

Particle confinement and transport is a significant issue for these devices.  The provision of
vacuum rotational transform with relatively few coils at low aspect ratio invariably leads to
large magnetic field ripple and the associated 1/ν transport regimes.  The low aspect ratio
(relative to conventional stellarators) results in stronger toroidal field ripple and larger orbit
displacements from flux surfaces.  One can therefore expect that some degree of
optimization will be required for these devices.  It has been shown7 that the quasi-helical
optimization approach can only be achieved to third order in an inverse aspect ratio
expansion, thus implying its inapplicability at very low aspect ratios.  For these reasons,
we expect different optimization strategies than quasihelical symmetrization will be of
interest at low aspect ratio.  Our goals are first to characterize the levels of transport present
in these devices, next to find out what dependencies they have on parameters such as
ambipolar electric fields, toroidal plasma current, collisionality, plasma β, and magnetic
configuration.  The work presented here is in the nature of a progress report as we have
primarily analyzed non-optimized configurations.  New approaches for the optimization of
low aspect ratio devices have recently been suggested8,9 and application of such techniques
is currently in progress.  In addition, the confinement evaluation tools we discuss are in a
continuing state of improvement.

We shall begin by describing several simple measures of particle confinement quality (Bmin,
Bmax , J*) which can be evaluated relatively quickly.  These measures will later be useful for
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optimization criteria.  Next, we describe Monte Carlo transport calculations which have
been carried out for ion transport for a range of different low aspect ratio configurations.
In addition to the standard non-optimized configurations, we also apply these measures to
several recently obtained optimized systems.

II.               Bounce-Averaged       Projections       of        Particle        Orbits

We first discuss analysis of particle orbits in 3D stellarator equilibria using bounce-
averaged methods since they are more rapid to evaluate and reduce the available parameter
space to a more manageable level than following the full guiding center orbit trajectories.
The following calculations are based on 3D stellarator equilibria which have been
transformed into Boozer magnetic coordinates.  We have used the VMEC10  stellarator
equilibrium code coupled with a vacuum magnetic field code (AVAC) which calculates the
fields produced by the discrete coils using a Green’s function approach.  Free-boundary,
finite β equilibria are found to exist for all of the configurations shown in Figure 1.
Transformation to Boozer coordinates11  is then carried out by equating the contravariant
representations of the magnetic field in both coordinate systems.  This leads to a field-line
differential equation for a doubly-periodic angle transformation function.  Singularities in
this equation at rational surfaces are then resolved by factoring B2 into co- and contravariant
components.  We find that maintenance of adequate convergence in the Boozer space
representation of B can require 400 to 600 Fourier modes for low aspect ratio devices

The longitudinal bounce invariant J = ∫mv| |dl provides an efficient way to evaluate
confinement of stellarator orbits.  Its validity is based on the assumption that an orbit does
not drift a significant amount during a bounce.  Since the bounce frequency scales as E1/2

(E = energy) and the cross-field drifts scale as E, there will generally be some upper limit in
energy beyond which J breaks down.  However, for orbits at typical thermal energies in
moderately high field period devices, this energy is generally high enough not to pose a
limitation.  In order to then readily analyze a full range of pitch angles, a further
simplification of J is necessary.  It has been shown12  that J may be approximated by a
reduced form, denoted by J*, in which the integration along the field line is replaced by an
integration over the Boozer toroidal angle coordinate (over a single field period);  this is
generally valid if the rotational transform per field period is small (ι/N << 1).  More precise
criteria for the validity of J* have been given in Ref. 12.  The motivation for the use of J*
is that it simplifies the categorization of orbits into three classes13: trapped, trapped/passing
transitional, and passing.  If the full bounce invariant, J, were used, more classes of
trapped orbits would need to be delineated, depending on whether their bounce motion
encompassed one field period, two field periods, etc.

A typical set of J* contours for an 8-field period tokamak/stellarator hybrid device is shown
in Figure 2.  Here we have kept the energy fixed at 1000 ev, included a radially varying
electrostatic potential which reaches eφ/kTion = 0.7 at the edge, and varied the ratio of the

energy to the magnetic moment (ε/µ), which is our pitch angle-like variable.
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Figure 2 - J* contours showing transition from helically trapped to passing
orbits

Cases are shown with (a) only trapped J* contours, (b) passing, transitional and trapped
contours, and (c) only passing contours.  The contours of J* (approximate orbit
trajectories) are plotted in a poloidal plane in Boozer space (flux surfaces are concentric
circles).  It is important to note that in using a constant-of-motion parameter such as
ε/µ, positive values of v| |

2 = ε − µB - eφ will not necessarily exist for arbitrarily specified
points in the cross-section.13   These are denoted as forbidden regions and indicated by
blank regions without contour lines in our figures.  The topology of the boundaries
between forbidden, trapped, transitional, and passing J* contours can be expressed in
terms of the Bmin, and Bmax  functions.  These are defined respectively as the minimum and
maximum values of B as one moves in Boozer coordinates along toroidal angle φ at

constant ψ and θ.  The boundaries between the various types of orbits can be written as:

0 < (ε/µ)(1 − qφ/ε) < Bmin forbidden region

Bmin < (ε/µ)(1 − qφ/ε) < Bmax helically trapped orbits (1)

Bmax  < (ε/µ)(1 − qφ/ε) mixture of transitional and passing orbits

The contour Bmin = (ε/µ)(1 − qφ/ε) then separates the forbidden and helically trapped

regions while the contour Bmax  = (ε/µ)(1 − qφ/ε) forms the boundary between helically
trapped and passing/transitional orbits.  Bmin contours are also useful as approximations to
the trajectories of deeply trapped orbits in the absence of an electric field.  In Figure 3 we
compare Bmin contours with J* contours for deeply trapped ions without an electric field (all
of which are unconfined here) and Bmax  contours with a set of J* contours which have a
boundary between helically passing and trapped/transitional orbits.
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Figure 3 - Comparison of Bm i n  contours with deeply trapped J* contours
(left) and Bm a x  contours with trapped/transitional J* contours (right).

As may be seen, the Bmin contours roughly follow the deeply trapped J* contours.  As will
be discussed further in section IV, the centering of Bmin contours on flux surfaces can be a
useful optimization criteria for the confinement of trapped orbits.  The Bmax  contours align
with the boundary between passing/transitional orbits and purely helically trapped orbits.
Making Bmax  constant on a flux surface can lead to a reduction of transitional orbits.  This
comes from the fact that in order to be transitional, a J* contour must intersect the Bmax
contour at a finite grazing angle; otherwise it would close on itself and become a passing
orbit.  Since the passing J* contours are nearly centered circles, making the Bmax  contours
also centered circles would leave no room for transitional orbits to fit in between the Bmax
contours and outermost passing orbits.  For this reason, our optimization approach will
also attempt to center the Bmax  contours on flux surfaces.

We have also adapted a guiding center symplectic orbit trajectory code13,14 to our low
aspect ratio hybrid devices.  This code integrates the coupled Hamiltonian equations11  for
dθ/dt, dφ/dt, dPθ/dt, and dPφ/dt in time in such a way as to approximately conserve the total
energy.  These trajectories have been overlaid on a set of J* contours based on the same
value of energy and ε/µ as the orbit.  Such comparison plots are shown in Figure 4 for 1
keV helically trapped, transitional and passing ions with no electric field present.
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Helically trapped Transitional Passing

Figure 4 - Comparison of particle guiding center trajectories with
associated J* contours

As may be seen, on the average, orbit trajectories follow J* contours.  For the transitional
orbit we have also shown the time dependence of the ratio of the parallel velocity to the total
velocity (v| |/v).  From J* itself we cannot predict at what point the orbit will change from
passing to helically trapped.  This depends on the relative alignment between the orbit’s
bounce phase and the helical field ripple.  Methods for calculating such transition
probabilities without solving the full orbit trajectory equations have been discussed
in.Ref. 12 We generally find good agreement as shown in Figure 4 between J* contours
and orbit trajectories, except for certain classes of transitional orbits which are in the
vicinity of the separatrix locations15 .

J* surfaces then provide a relatively quick way of assessing confinement in low aspect ratio
devices.  The location of these contours depends on the parameters of energy, ε/µ, and
electric field.  For trapped orbits without an electric field, there is no dependence on
energy.  In order to encompass all types of orbits, ε/µ typically should be varied from
Bmin, global up to Bmax, global (i.e., the minimum/maximum in B over the whole volume).  For
ε/µ > B max, global most of the volume is occupied by passing particles.  For the low aspect
ratio devices examined here, the helically trapped orbits have the poorest confinement so
we have focused most of our attention on mechanisms for closing and centering their J*
contours.  Electric fields provide one avenue for improving trapped orbits.  In Figure 5
such effects are shown.
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Figure 5 -  Effect of electric field on ion J* contours.

The above plots have been made for 1000 ev ion orbits.  In Figure 6 we show typical J*
contours for 1000 ev electrons in an 8 field period device at varying levels of electric field.
In contrast to the ion orbits at ε/µ = 1.05, the electron J* contours show a mixture of

trapped, passing, and transitional orbits and the helically trapped orbits for eφ0/kTe > 1 now
occur inside the region of the passing orbits.  As the electric field is increased, the electron
confinement also improves and by eφ0/kTe = 2 all orbits for this case (ε/µ = 1.05,
Te = 1000 ev) are also confined.
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Figure 6 - Dependence of electron J* contours on the electric field

III.               Monte        Carlo        Transport       Simulations

In the preceding section, several measures of single particle confinement in hybrid systems
were discussed.  Although these are useful for indicating regions of configuration and
velocity space where direct orbit losses may occur, they do not provide information on the
rate of these losses, nor do they indicate the level of the slower, diffusive losses. Monte
Carlo methods.16,17,18,19 have been used extensively to evaluate both diffusive and direct
particle losses in stellarators.  This approach is well suited for configurations which require
a large spectrum of Fourier modes to represent the equilibrium B field and configurations
with classes of orbits that have large displacements from flux surfaces.  An alternative
approach being developed is direct solution of the drift kinetic equation using variational
techniques.20   The advantage of this method is that it provides the full transport matrix, but
it is still inherently a diffusive model and cannot evaluate the direct particle losses.

We have adapted an earlier Monte Carlo model16  to our configurations.  This model
launches an ensemble of particles on a single interior flux surface, randomly distributed in
pitch angle, and in toroidal and poloidal angles.  The particle energies are chosen in such a
way as to approximate a Maxwellian distribution.  The orbits of these particles are then
followed using the Hamiltonian guiding center equations and with the B field calculated
based on the full set of equilibrium Bmn Fourier modes.  We have found that improvements
in the efficiency of the code can be obtained by initially fitting the ψ, θ, and φ dependencies
of B with 3D splines.  Although this leads to some loss of accuracy, it has not proven
significant for the cases we have benchmarked.  As the particles leave the outermost flux
surface, they are restarted at the initial flux surface in order to conserve particle number
density.  An alternate approach where the particles are removed from the distribution as
they are lost is also being implemented; in this case, particle and energy lifetimes could be
inferred by observing decay rates.
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In Figure 7 rotational transform profiles and B(φ) on the magnetic axis are plotted for a
number of the cases which we have analyzed.  Our typical test case takes Tion = 1000ev,
nion = 1013  cm-3, with constant (flat) profiles for the background ion density and
temperature.  The test ions (also at 1000 ev) are started out at ψ/ψedge = 0.25 (ψ = toroidal
flux).
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Figure 7 - Iota profiles and variation of |B| vs. toroidal angle (over one
field period)

These parameters result in low collisionality relative to drift times and tend to emphasize
direct losses (when they are present).  For this reason, in the following we will present
only the global particle and energy loss rates through the outermost flux surface and will
not discuss local diffusive loss rates.  More recent calculations with higher densities and
lower temperatures have shown that regimes are possible in these devices where diffusive
losses dominate.  We have tried cases with 256 to 1024 particles  (currently limited by
computational time) and not found significant differences; most of the results presented
here are based on 256 particles.  Of course, due to the continual replacement of particles
passing through the last closed flux surface, the net particles followed over the course of a
calculation will be greater than these numbers.  We typically try to follow the test particle
distribution for 2 to 4 collision times.  Particle and energy loss rates vs. time for the cases
shown in Figure 7 are plotted in Figure 8.
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Figure 8 - Monte Carlo particle and energy loss rates vs. time for cases of
Figure 7.

We have chosen to normalize the loss rates (shown here as percent per millisecond) to the
number of particles launched initially.  Due to the above mentioned continual replacement
of lost orbits, the total number of particles followed throughout the calculation will
generally exceed this number; one could also consider normalizing to this latter number
which would tend to bring the above curves closer together.  The 4 period device has the
highest loss rates due to its lower magnetic field and high relative ripple.  The 2 period
device  shows the lowest loss rates as a result of its lower ripple and is approaching ATF21

levels of transport.  The indication of ≈ 10% per msec loss rates for ATF is consistent with
its observed confinement times.  The 8 period device is in between and shows that net
toroidal current  (at a level which roughly doubles iota) leads to about a 25% reduction in
loss rates.  As may be seen, the devices with higher loss rates typically show a peaking of
the loss at early times in the calculation.  This is likely attributed to the fact that direct
particle losses are largest at early times; as time progresses, particle replacement of the
orbits passing through the last closed flux surface will tend to select out a subpopulation of
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orbits which are better confined.  Since we are primarily interested in relative comparisons
between the different configurations here, we have not attempted to correct for this effect.

In Figure 9 we show the dependence of particle and energy loss rates on the electric field
for the 8 field period device with current.  As may be seen, increasing values of potential
lead to a secular reduction in the particle and energy loss rates.
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Figure 9 - Monte Carlo particle and energy loss rates vs. time for several
values of electric field.

In Figure 10 plots are given of projections of the particle trajectory cloud on a fixed
poloidal plane along with trapped J* contours for cases from Figure 9 with and without an
electric field present.  It is clear that without and electric field, the particle trajectories
predominantly follow trapped J* contours to the wall.  For the configuration used here, the
magnetic field direction is such that ion trajectories precess around the J* contours  in a
counter-clockwise sense.  With sufficient electric field to close off the trapped particle loss
cone, the particle cloud becomes more isotropic and the associated losses are more
diffusive in character.
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Figure 10 - Comparison of Monte Carlo particle trajectories with deeply
trapped J* contours.

Although the present Monte Carlo model does not follow ions and electrons
simultaneously, we have preliminary results from separate calculations comparing electron
loss rates.  Although the particle cloud plots for electrons also show direct losses above the
midplane (since electrons precess in a clockwise direction) they are more smeared out due
to the higher collisionality.  The electron loss rates are also lower that those for ions, which
tends to reinforce the direction chosen here for the electric field (pointing inward) in our ion
transport studies.

IV.               Magnetic        Optimization

Recent stellarator design efforts22,23,24 have focused much attention on magnetic coil
optimization.  This is motivated by a range  of goals, such as the need to improve
confinement, reduce bootstrap current, maintain a magnetic well, reduce ripple, etc.  Our
primary goal has been improved confinement of helically trapped particles within the
constraints of preserving the aspect ratio, iota, and V″ well.  Although ambipolar electric
fields can generally close off the loss regions of thermal plasma species, some degree of
magnetic optimization will be needed for the confinement of more energetic species, such
as RF tails, beams, and, ultimately, alpha populations.  Our results in the area of
optimization of hybrid devices are very preliminary at this stage and will be discussed more
fully in a subsequent paper.
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Until recently, the dominant optimization techniques have generally focused on achieving
some degree of symmetry in the structure of the magnetic field in Boozer coordinates since
this is the context within which particle confinement is most readily influenced.  Such
symmetries are achieved through tailoring the shape of the magnetic flux surfaces which
only influence particle confinement indirectly through their effect on the Boozer spectrum
of |B|.  Attaining these symmetries would then lead to an additional invariant which limits
particle excursions away from flux surfaces.  Most of the attention has been directed
towards systems possessing either helical symmetry22,24 (quasi-helical) or toroidal
symmetry23  (quasi-toroidal).  Recently, an alternate approach, omnigeneity,8,9 has also
been suggested.  This would attempt to improve confinement by directly reducing the
bounce-averaged drift of particles away from flux surfaces.  As suggested in Ref. 9, this
approach is not as constraining as the quasi-symmetrization methods and can potentially
open up wider regions of design space, especially at low aspect ratio.  Results obtained in
Refs. 8 and 9 indicate that omnigeneity can be reduced to the simple criterion of obtaining
equal distances on a flux surface between the same values of |B| for the full range of |B|
values on the surface.

In the following, we shall use the simpler criteria of centering Bmin and Bmax  contours on
flux contours, which can approximate omnigeneity9  and is, in addition a prerequisite  for
attaining the equal distance criteria mentioned in Refs. 8 and 9.  This should improve the
confinement of the deeply trapped and transitionally trapped  particles.  The approach used
is to vary the shape of the last closed flux surface iteratively, coupled with recalculation of
the equilibrium and evaluation of the deviation of Bmin and Bmax  from being constant upon
some subset of flux surfaces.  This loop is driven by a nonlinear least squares minimization
algorithm (Levenberg-Marquardt) which attempts to search for the flux surface shape
which minimizes the flux surface variation of Bmin and Bmax .  Once the desired shape has
been achieved, the final step (under development) in this process is then to work outward
from the last closed flux surface to a coil configuration which is consistent with such a
shape.

The above process has been applied to one of our vacuum field, zero current 8 field period
configurations.  In Figure 11 we plot Bmin and Bmax  contours for the original and two of the
optimized configurations.
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Original 8 field
period device Optimization (a) Optimization (b)

Bmax

Bmin

Figure 11 - Bm i n  and Bm a x  contours for the original un-optimized
configuration and two optimized configurations.

These show the feasibility of this process for centering and closing such contours.  They
clearly are not yet functions of flux only (concentric circles), but the fact that there is, in
particular,  a significant volume of closed Bmin contours in the optimized cases indicates that
progress has been made in the confinement of deeply trapped orbits.  In Figure 12 we plot
the structure of |B| along a field line on the outermost flux surface for the 3 configurations.
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Figure 12 - Variation of |B| along a field line on the last closed outermost
flux surface for un-optimized and optimized configurations.

The optimizations actually end up increasing the average ripple, although its distribution on
the flux surface has changed.  The beneficial effects on transport of redistributing ripple
from the outside to the inside of a stellarator have been pointed out earlier.25   The ideal state
of Bmin and Bmax  being only functions of flux would imply that the tops and bottoms of the
oscillations of |B| in Figure 12 would be perfectly lined up.  Although this has not yet been
achieved here, the plots show that the optimization is moving the configuration in this
direction.  Finally, in Figure 13, we have plotted the loss rates obtained from our Monte
Carlo model for the two optimized configurations relative to the original (un-optimized)
configuration.  This demonstrates the efficacy of the optimization procedure for lowering
transport rates with about a factor of two reduction in loss rates in going from the original
configuration to the second optimized system.
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Figure 13 - Comparison of Monte Carlo particle and energy loss rates for
the optimized configurations compared to the original configuration.

V.               Conclusions

Transport and confinement are significant issues for low aspect ratio tokamak/stellarator
hybrid configurations; these devices tend to have both large ripple and strong toroidal
effects.  We have applied a variety of tools towards assessing the confinement features of
these devices: Bmin,  Bmax  contours, J* adiabatic invariant contours, guiding center orbit
trajectories, and Monte Carlo simulations of transport.  At low collisionality, a significant
loss component  comes from direct loss of the helically trapped orbits.  Our results have
indicated several directions to proceed for confinement improvement, including: control
over the magnitude and profile of the electric field, adding toroidal plasma current,
increasing magnetic field, and decreasing ripple.  In addition, simplified criteria (i.e.,
closure and centering of Bmin,  Bmax  contours on flux surfaces) have been suggested for
magnetic optimization and tested.  Preliminary results based on these optimization targets
indicate a factor of 2 reduction in global loss rates can be achieved.  We would anticipate
that further effort in this direction can lead to higher degrees of improvement.
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