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QPS: Compact Stellarator Physics

• To minimize ripple losses due to 3D
effects, traditional stellarators are large
aspect ratio (A)
− Scales to large reactors (W7X -> 24m reactor)

• To reduce stellarator size (lower A), the
QPS design
− Uses unique US super-computing capabilities

to perform advanced non-linear optimizations
aimed at improving ripple transport through
quasi-poloidal symmetry

− Allows finite bootstrap current to ease coil
design and increase ββββ limits
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Status Report on Exciting QPS
Developments Since the PVR (4/01)

• At time of PVR, we had designed a low
aspect ratio QPS configuration (GB5) with
adequate neoclassical confinement, but with
no coils

• Present QPS has both better transport (local
diffusivity comparable to W7-X, but at 25%
the aspect ratio!) and buildable coils with
acceptable reconstruction that preserves
designed physics properties of plasma
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QPS: Linked Mirror (Magnetically),
Racetrack- Drakon  (Topologically),

Compact A=R/<a> ~ 2.75

|B| (T)
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QPS Will Explore a New Region of
Configuration Space: Low Aspect Ratio
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Symmetry of |B| Limits Ripple (1/νννν)
Losses Due to 3D in Advanced

Stellarators

• Different types of symmetry lead to
different approaches to improving low
collisionality transport
− Quasi-axisymmetry (NCSX): tokamak-like

|B|=|B|(ψψψψ,θθθθ)
− Quasi-helical (HSX): |B|=|B|(ψψψψ,mθθθθ - nϕϕϕϕ)
− Quasi-poloidal (W7-X, QPS): |B|=|B|(ψψψψ,ϕϕϕϕ)
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Quasi-Poloidal (and Quasi-Helical)
Symmetry Reduces BX∇∇∇∇|B| Drifts

Increased alignment of B with ∇∇∇∇|B| reduces
heat transport and bootstrap currents

   Quasi-axisymmetric                             Quasi-poloidal

Magnetic Field
Lines
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QPS Has Similar Symmetry in Boozer
Space to Recent High ββββ Hybrid
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Key Features of QPS

• Very low (for stellarator) A ~ 2.75
− A ≡ <R>/<a>, where <a> ≡≡≡≡ <ab> 0.5 ~ <a>tokιιιι0.5

• Optimized 1/νννν transport by aligning of B
and ∇∇∇∇|B| (qp-symmetry:smaller drifts)
− Low viscosity in poloidal direction (EXB flow) :

transport barriers at reasonable power levels

• Small (but finite) bootstrap current
compared with tokamak (Ibs ~ Itok/3)
− Kink, vertical stability up to ββββ ~ 4%

• Trapped particles localized in low κκκκ
(curvature) regions: DTE mode stability
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NCSX: cryogenic coils, interior vacuum vessel
QPS  :  room-temperature (gas cooled) coils, 
            exterior vacuum vessel

NCSX QPS
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QPS Post PVR Progress:
Better Physics and Better Coils

Importance of tool development
Overview of stellarator optimization
Ripple transport reduction at low A
Coil design and plasma reconstruction
for optimized configurations
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Physics Progress Enabled by Numerical
Tool Developments

• STELLOPT (stellarator optimizer code)
− Merged NEO, COILOPT: improve physics (stability,

transport, ), also directly from coils. Collaboration with
PPPL

• COILOPT (coil optimization code)
− Introduced flexible basis set option (Fourier/Spline):

design coils with lower B⊥⊥⊥⊥ errors satisfying engineering
constraints (coil bend radii, access for neutral beams)

• DKES (drift-kinetic equation solver)
− ORNL seed money: resolved ill-conditioning at low (1/νννν

regime) collisionalities: convergent solutions obtained
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Reduced Ripple Loss in QPS Obtained Using
NEO/DKES Codes in Optimizer

• NEO
− Developed by Austrian collaborators

Kernbichler and Nemov; computes 1/νννν transport

− Fast method for evaluating trapped particle J-
invariants and effective neoclassical ripple
    εεεεeff, where χχχχheat ~ (εεεεeff )3/2.

• DKES
− Used both in optimizer and standalone to verify

neoclassical transport over a range of collision
frequencies corresponding to experimental T,n
profiles
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Ripple Transport (~εεεεeff
3/2) Reduced in

Present QPS Design
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Heat Diffusivity at Higher νννν Follows 1/νννν
Trends

 DKES model
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Latest Configurations Have Improved
Poloidal Symmetry
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Bootstrap Current Alignment Is Good
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Ideal MHD Stability for QPS

• Ballooning
− COBRA code (Sanchez, et. al.) included in

optimization
• Infinite n  ballooning modes set Q PS pressure

limit at ββββ    ≥≥≥≥ 2% (actually higher - FLR, etc.?)

• Mercier
− Only isolated surfaces are unstable

•  not expected to be an issue

• Kink/Vertical Modes
− QPS stable to vertical/kink modes for ββββ    ≥≥≥≥ 4%
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Coil Design at Low A is a Challenge Met
by the COILOPT Code

• COILOPT (D. Strickler, et. al., to be published)
− Workhorse code for both QPS and NCSX designs

• Matches Bnormal = 0 at plasma boundary, using
VMEC and BNORM (P. Merkel) input

− Uses general representation for coil winding law
• incorporates either Fourier harmonics or B-splines

as basis functions

− Engineering constraints imposed on coils to
guarantee accessibility (ports, injection) and
practical realization (can be built!)
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Flexible Description of Coils

• Toroidal winding surface (ΓΓΓΓ) : (u,v) angles
R = Σ rmn cos(2π(mu + nv))
Z = Σ zmn sin(2π(mu + nv))

φ = 2πv/N
Stellarator symmetry: R(u,v) = R(-u,-v); Z(u,v) = -Z(-u,-v)

• Either Fourier or B-spline basis for modular
coils on ΓΓΓΓ in terms of arclength  0 < s < 1
− u(s) = s + U(s) U periodic: U(0) = U(1)
− V(s) =       V(s) V periodic

• U(s), V(s) expanded in basis set, coefficients
varied to match magnetic, engineering constraints
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Spline Representation of Winding Law in COILOPT
Can Remove Local Errors
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Coils For Present QPS Design Use
Innovative Split Coil Feature

Split (Ic/2) coils Ic ~ 350 kA
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Present QPS Design Satisfies Geometric
Constraints for Coils
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Reconstruction from Coils Preserves
QPS Physics

               <Berror> = .75% Berror(max) = 7%

(1%, 12% for PVR configurations with inferior physics)
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ORNL (UT-Battelle) Recognition for QPS
Science

• Award for Scientific Research by a Team
− 10 ORNL members, 8 collaborators
− For research on the physics of plasma confine-

ment in three-dimensional systems, leading to
the development of the QPS Stellarator concept

• Finalist for R&D Leadership by a front-line
manager
− J. Lyon, QPS project manager

• Finalist for Distinguished Engineer
− B. Nelson, lead QPS engineer
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The Laboratory Intends to Invest Substantially in the
Future of Fusion at ORNL

• 27, 500 sq. ft multi-purpose
research facility at new site
(65% Fusion)

• Infrastructure is configured for
the QPS requirements

− all coil power supplies; ECH &
ICRF heating; bus work;
cooling water; etc.

• 60 office spaces in a new
office complex in the main
campus

• Additional offices at the QPS
site
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• <R> = 0.9 m
• <a> = 0.33 m
• <R>/<a> = 2.7
• Vplasma = 2 m3

• 61-cm dia. Ports
• No interior

vacuum vessel
•  ι0 = 0.21, ιa =

0.32
• Bmod = 1 T (1 s)
• BT = – 0.2 T
• Ip † 60 kA
• PECH = 0.6-1.2

MW
• PICRF = 1-3 MW
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Project Status & Proposed Schedule
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Summary
• Substantial progress has been made in

designing a QPS device to test physics of
compact stellarator (low A)
− Better physics and better coils
− A design exists - with coils - that is suitable

basis for CDR

• Future activities in support of the CDR will
include:
− Island analysis and suppression — trim coils
− Energetic particle heating and confinement
− Development of detailed experimental program
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Future Activities (cont d)

• Further improvements of coils
− Remove localized regions of small bend radii

on inboard side
− Analyze effects of finite coil thickness

• Continue investigation of high-ββββ QPS
design and its relation to proposed
experiment
− Second stable plasma for ββββ > 6%

− Investigate paths to second stability
• work with C. Hegna and A. Ware
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Comparison of QPS With NCSX

Reduced poloidal
viscosity

Reduced toroidal
viscosityEnhanced Confinement

Concept exploration
Low A equilibrium

and transport

Proof-of-principle:
High-ββββ stability

Key Physics Issues

A = 2.7, N = 2, Nc =16A = 4.3, N = 3, Nc = 18
Aspect Ratio, Field
Periods, Modular Coils

Quasi-poloidalQuasi-axisymmetricMagnetic Symmetry

0.9m, 0.33m, 1T, 1-
3MW (ECH, EBW,

ICH)

1.4m, 0.33m, 2T, 6-
12MWR, a, B, Pheating

QPSNCSXFeature


